CHARACTERISTICS OF SHACKLE GRAPH: Shack(Kn,v(j,i),t), Shack(Sn,v(j,i),t), & Shack(K(n,n),v(rj,i),t)

Firmansyah Firmansyah, Abdul Mujib

Abstract


Abstrak:

Operasi schackle adalah operasi antara dua atau lebih graf yang menghasilkan graf baru. Graf shackle dinotasikan  adalah graf yang dihasilkan dari t salinan dari graf  yang diberi simbol dengan  dimana  dan t bilangan asli. Operasi shackle ppada penelitian ini adalah shackle titik. Operasi shackle titik dinotasikan dengan  artinya graf yang dibangun dari sembarang graf  sebanyak  salinan dan titik  sebagai . Kelas graf yang akan di eksporasi karakterisinya dan bilangan kromatinya adalah , S , & S . Hasil penelitiannya menunjukkan bahwa bilangan kromatik graf shackle sama dengan subgraf pembangunnya.

 

Kata Kunci:

Operasi Shackle, Shackle titik, graf shackle, bilangan kromatik.

 

Abstract:

A shackle operation is an operation between two or more graphs that results in a new graph. Shackle graph notated  is a product graph from  copy of graph  is denoted by  where  and  are natural numbers. The shackle operation in this research is vertex shackle. Vertex shackle operation is denoted by  which means that the graph is constructed from any graph  as many as  copies and vertex  as linkage vertex. The class of graphs examined in this study are , S , & S . The results show that the chromatic number of the shackle graph is the same as the subgraph that generates it.

 

Keywords:

Shackle Operation, Vertex Shackle, Shackle Graph, Chromatic Numbers.


Full Text:

PDF

References


Bondy, J. A., & Murty, U. S. R. (2008). Graph theory with applications (S. Axler & K. A. Ribet, Eds.). New York: Springer.

Diana, E. L., Suryaningtyas, W., & Suprapti, E. (2016). Pengaturan lampu lalu lintas di persimpangan jalan ahmad yani giant dengan aplikasi pewarnaan teori graf. MUST: Journal of Mathematics Education, Science and Technology, 1(1), 69–85.

Diestel, R. (2005). Graph teory (Electronic). New York: Springer-Verlag Heidelberg.

Hartsfield, N., & Ringel, G. (2003). Pearls in graph theory: A comprehensive introduction. New York: Dover Publication, Inc.

Maarif, S. (2017). Aplikasi pewarnaan titik pada graph dalam pembuatan jadwal pelajaran. Pi: Mathematics Education Journal, 1(1), 22–26.

Maryati, T. K., Salman, A. N. M., Baskoro, E. T., Ryan, J., & Miller, M. (2010). On H-supermagic labelings for certain shackles and amalgamations of a connected graph. Utilitas Mathematica, 83(October 2016), 333–342.

Mujib, A. (2011). Bilangan kromatik permainan pada beberapa graf hasil kali tensor. Bandung: nstitut Teknologi Bandung.

Mujib, A., & Assiyatun, H. (2011). Game chromatic numbers of tensor product graphs. Interior, 1–8.

Saifudin, I. (2020). Power Domination Number On Shackle Operation with Points as Lingkage. JTAM | Jurnal Teori Dan Aplikasi Matematika, 4(1), 1. https://doi.org/10.31764/jtam.v4i1.1579




DOI: http://dx.doi.org/10.30821/axiom.v10i2.9252

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

p-ISSN: 2087-8249 | e-ISSN: 2580-0450

 Indexed by:

                      

 

 

 

 

 Creative Commons License

AXIOM : Jurnal Pendidikan dan Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.