METODE ALGORITMA GENETIKA UNTUK PENYUSUNAN JADWAL PERKULIAHAN PROGRAM STUDI TADRIS MATEMATIKA UIN SULTHAN THAHA SAIFUDDIN JAMBI

Ainun Mardia, Sunarto Sunarto

Abstract


Abstrak:

Pada penyusunan jadwal perkuliahan sering kali ditemukan waktu yang bersamaan antara dosen, hari, dan ruangan sehingga menjadi masalah rutin yang terjadi pada program studi tadris matematika UIN Sulthan Thaha Saifuddin Jambi. Penelitian ini merupakan penelitian pengembangan yang bertujuan untuk menyusun jadwal perkuliahan menggunakan Metode Algoritma Genetika. Algoritma Genetika adalah algoritma optimasi pada prosedur yang menirukan mekanisme dari genetika alami. Penelitian ini dilaksanakan pada Program Studi Tadris Matematika Fakultas Tarbiyah dan Keguruan UIN Sulthan Thaha Saifuddin Jambi dengan menggunakan data jadwal perkuliahan pada semester genap tahun ajaran 2020/2021. Hasil yang diperoleh adalah sistem informasi penjadwalan berbasis website yang disusun menggunakan metode Algoritma Genetika dan jadwal perkuliahan yang yang telah disusun dari hasil pembangkitan algoritma genetika. Penyusunan jadwal perkuliahan dengan Metode Algoritma Genetika dalam penyusunan jadwal perkuliahan di Program Studi Tadris Matematika dapat disusun dengan lebih efektif tanpa ada jadwal yang bersamaan.

 

Kata Kunci:

Metode Algoritma Genetika, Penyusunan Jadwal Perkuliahan

 

Abstract:

In the preparation of the lecture schedule, it is often found at the same time between the lecturer, day, and room so that it becomes a routine problem that occurs in the tadris mathematics study program at UIN Sulthan Thaha Saifuddin Jambi. This research is a development research that aims to arrange lecture schedules using the genetic algorithm method. A genetic algorithm is an optimization algorithm on a procedure that mimics the mechanics of natural genetics. This research was carried out at the Tadris Mathematics Study Program, Faculty of Tarbiyah and Teacher Training at UIN Sulthan Thaha Saifuddin Jambi by using lecture schedule data in the even semester of the 2020/2021 academic year. The results obtained are a website-based scheduling information system compiled using the genetic algorithm method and a lecture schedule that has been compiled from the results of the genetic algorithm generation. The preparation of the lecture schedule using the genetic algorithm method in the preparation of the lecture schedule in the Tadris Mathematics Study Program can be arranged more effectively without any concurrent schedule.

 

Keywords:

Algorithm Genetics Method, Preparation of  Lecture Schedule


Full Text:

PDF (Indonesian)

References


Berliana, V. (2019). Decision Support System Based on Genetic Algorithm for Course Scheduling Problems (Faculty of Nanjing Xiaozhuang University). Faculty of Nanjing Xiaozhuang University. Retrieved from http://e-journal.uajy.ac.id/id/eprint/23331 http://e-journal.uajy.ac.id/23331/1/1607089181.pdf

Ikhsan, R., Wati, D. A. R., and Astuti, B. (2013). Penjadwalan operasional pembangkit berbasis algoritma genetik pada sistem pembangkit sumatera bagian tengah. Teknoin, 19(1), 1–6. https://doi.org/10.20885/teknoin.vol19.iss1.art3

Kumar, S., and Pratap, M. (2010). Pattern recall analysis of the Hopfield neural network with a genetic algorithm. Computers and Mathematics with Applications, 60(4), 1049–1057. https://doi.org/10.1016/j.camwa.2010.03.061

Laudon, K., and Laudon, J. P. (2005). Management Information Systems: Managing the Digital Firm. New Jersey: Upper Saddle River.

Mahmudy, W. F., Marian, R. M., and Luong, L. H. S. (2012). Solving part type selection and loading problems in flexible manufacturing mystem using real coded genetic algorithms – Part I : modeling. World Academy of Science, Engineering and Technology, 6(4), 699–705.

Spranger, K., Capelli, C., Bosi, G. M., Schievano, S., and Ventikos, Y. (2015). ScienceDirect Comparison and calibration of a real-time virtual stenting algorithm using Finite Element Analysis and Genetic Algorithms. Comput. Methods Appl. Mech. Engrg., 293, 462–480. https://doi.org/10.1016/j.cma.2015.03.022

Supriana, I. W., Raharja, M. A., Bimantara, I. M. S., and Bramantya, D. (2021). Implementasi dua model crossover pada algoritma genetika untuk optimasi penggunaan ruang perkuliahan. Jurnal RESISTOR (Rekayasa Sistem Komputer), 4(2), 167–177. https://doi.org/10.31598/jurnalresistor.v4i2.758

Suratno, T., Rarasati, N., and Gusmanely, Z. (2019). Optimization of Genetic Algorithm for Implementation Designing and Modeling in Academic Scheduling. Eksakta, 20(1), 17–24.




DOI: http://dx.doi.org/10.30821/axiom.v10i2.10336

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Ainun Mardia, Sunarto Sunarto

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

p-ISSN: 2087-8249 | e-ISSN: 2580-0450

 Indexed by:

          

 

 

 

 

 Creative Commons License

AXIOM : Jurnal Pendidikan dan Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.