Numerical Pricing of European Stock Option Based on Black-Scholes Model Using Crank-Nicolson Method

Isnaini Emma Wimala Putri, Rudianto Artiono

Abstract


Accurate option pricing is an important issue in quantitative finance, especially in emerging financial markets, which are generally characterized by price volatility and limited historical data. This research evaluates the numerical performance of the classical Crank–Nicolson finite difference method in determining the price of European call options based on the Black–Scholes model using Indonesian stock market data. The Black–Scholes equation is discretized on a uniform spatial and temporal grid, and the numerical solution is verified by comparison with the Black–Scholes analytical solution as a mathematical reference. The numerical results show that the Crank–Nicolson method produces stable and convergent solutions, with a relative error of less than 1% at a sufficiently fine grid resolution. Furthermore, sensitivity analysis to volatility and temporal convergence tests demonstrate the consistency of the numerical solution's behavior to variations in the model's key parameters. These findings indicate that the Crank–Nicolson method provides a reliable numerical approach for evaluating European option pricing within the classical Black–Scholes framework under the analyzed market conditions. 


Keywords


Black–Scholes Model; Crank–Nicolson Method; European Option; Finite Difference Method; Numerical Option Pricing.

Full Text:

PDF

References


T. Philippon, “On fintech and financial inclusion,” BIS Working Papers, Bank for International Settlements, 2020. Available: https://www.bis.org/publ/work841.htm

J. Begenau and T. Landvoigt, “Financial regulation in a data-driven economy,” Journal of Economic Perspectives, vol. 36, no. 2, pp. 93–118, 2022. Available: https://doi.org/10.1257/jep.36.2.93

S. Mahmudah, W. L. Rini, and A. M. Majid, “The role of portfolio theory in risk management and investment decision making,” Magister: Manajemen Strategis dan Terapan, vol. 1, no. 1, pp. 30–36, 2024. Available: https://ejournal.itbwigalumajang.ac.id/index.php/mgt

J. C. Hull, Options, Futures, and Other Derivatives, 10th ed. Harlow, U.K.: Pearson Education, 2021.

N. F. Nuzula and F. Nurlaily, Dasar-dasar Manajemen Investasi. Malang, Indonesia: Universitas Brawijaya Press, 2020.

G. Bekaert and C. R. Harvey, “Emerging markets finance,” Journal of Empirical Finance, vol. 57, pp. 1–17, 2020. Available: https://doi.org/10.1016/j.jempfin.2020.02.002

Y. Aït-Sahalia, M. Karaman, and L. Mancini, “The term structure of equity and bond risk premia,” Journal of Econometrics, vol. 228, no. 1, pp. 206–227, 2022. Available: https://doi.org/10.1016/j.jeconom.2021.10.003

F. Black and M. Scholes, “The pricing of options and corporate liabilities,” Journal of Political Economy, vol. 81, no. 3, pp. 637–654, 1973. Available: https://doi.org/10.1086/260062

I. Florescu, M. C. Mariani, and I. Sengupta, “Option pricing with transaction costs and stochastic volatility,” Electronic Journal of Differential Equations, vol. 2014, no. 165, pp. 1–19, 2014. Available: https://ejde.math.txstate.edu/Volumes/2014/165/florescu.pdf

D. Tavella and C. Randall, Pricing Financial Instruments: The Finite Difference Method. Hoboken, NJ, USA: Wiley, 2020.

R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations. Philadelphia, PA, USA: SIAM, 2022.

D. J. Duffy, Finite Difference Methods in Financial Engineering. Chichester, U.K.: Wiley, 2022.

H. Romli, M. F. Wulandari, and T. S. Pratiwi, “Faktor-faktor yang mempengaruhi volatilitas harga saham,” Jurnal Ilmiah Ekonomi Global Masa Kini, vol. 8, no. 1, pp. 1–5, 2017. Available: https://doi.org/10.36982/jiegmk.v8i1.281

E. Mardiyaningsih and R. Andhitiyara, “Analisis volatilitas saham sebelum dan sesudah stock split,” Journal of Information System, Applied, Management, Accounting and Research, vol. 4, no. 1, pp. 1–13, 2020.

S. Dewi and I. Ramli, “Opsi saham pada pasar modal di Indonesia,” Jurnal Muara Ilmu Ekonomi dan Bisnis, vol. 2, no. 2, pp. 300–312, 2018. Available: https://doi.org/10.24912/jmieb.v2i2.1001

Y. Achdou and O. Pironneau, Computational Methods for Option Pricing. Philadelphia, PA, USA: SIAM, 2005.

Y. K. Kwok, Mathematical Models of Financial Derivatives, 2nd ed. Berlin, Germany: Springer, 2008.

K. W. Morton and D. F. Mayers, Numerical Solution of Partial Differential Equations: An Introduction, 2nd ed. Cambridge, U.K.: Cambridge University Press, 2005.

P. P. Boyle, M. Broadie, and P. Glasserman, “Monte Carlo methods for security pricing,” J. Econ. Dyn. Control, vol. 21, no. 8–9, pp. 1267–1321, 1997. Available: https://doi.org/10.1016/S0165-1889(97)00028-6

B. Øksendal, Stochastic Differential Equations: An Introduction with Applications. Berlin, Germany: Springer, 2000.

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, 2nd ed. New York, NY, USA: Springer, 1998.

P. Wilmott, Paul Wilmott on Quantitative Finance, 2nd ed. Chichester, U.K.: Wiley, 2006.

P. A. Forsyth and K. R. Vetzal, “Quadratic convergence for valuing American options using a penalty method,” SIAM J. Sci. Comput., vol. 23, no. 6, pp. 2095–2122, 2002. Available: https://doi.org/10.1137/S1064827500383378

W. Hundsdorfer and J. G. Verwer, Numerical Solution of Time-Dependent Advection–Diffusion–Reaction Equations. Berlin, Germany: Springer, 2003.

R. S. Tsay, Analysis of Financial Time Series, 3rd ed. Hoboken, NJ, USA: John Wiley & Sons, 2010.

R. E. Walpole, R. H. Myers, S. L. Myers, and K. Ye, Probability and Statistics for Engineers and Scientists, 9th ed. Upper Saddle River, NJ, USA: Prentice Hall, 1998.

G. D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference Methods, 3rd ed. Oxford, U.K.: Oxford University Press, 1985.

Yahoo Finance, “Options,” Yahoo Finance. Accessed: Dec. 30, 2025. Available: https://finance.yahoo.com/

Bank Indonesia, “BI Rate and Monetary Policy Indicators,” Bank Indonesia. Accessed: Dec. 30, 2025. Available: https://www.bi.go.id/




DOI: http://dx.doi.org/10.30829/zero.v10i1.28070

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Publisher :
Department of Mathematics
Faculty of Science and Technology
Universitas Islam Negeri Sumatera Utara Medan
Email: zero_journal@uinsu.ac.id
WhatsApp: 085270009767 (Admin Official)
SINTA 2 Google Scholar CrossRef Garuda DOAJ