Forecasting Macroeconomic Variables in Indonesia Using the Vector Autoregressive Method
Abstract
This study aims to analyze the dynamic relationship and predict inflation, the rupiah exchange rate, oil and gas exports, and BI interest rates in Indonesia. The Vector Autoregressive (VAR) method was used with monthly data from January 2015 to September 2025, the best model obtained was VAR (2). The Granger causality test results show that most variables are dominated by their own lag effects. Impulse response analysis shows that shocks are temporary and subside in the medium term. Forecast results for October 2025–September 2026 shows relatively stable inflation in the range of 2.42–2.70%. The rupiah exchange rate is expected to depreciate moderately by around 1.4%. Meanwhile, oil and gas exports declined significantly by 3.9%, and the BI interest rate is expected to fall by 12.8% to 4.14%. These findings indicate that Indonesia's macroeconomic stability is dominated by internal dynamics, so monetary policy focuses on inflation and the exchange rate.
Keywords
References
P. K. Patel, “The Impact of Exchange Rate Volatility on International Trade and Economic Recovery,” Galore International Journal of Applied Sciences and Humanities, vol. 9, no. 2, pp. 118–125, 2025, doi: 10.52403/gijash.20250215.
Rustarto and H. Ali, “The Effect of Price, Public Purchasing Power And Consumption Level on Rice Commodity Inflation in Pangkalpinang City,” Dinasti International Journal of Economics, Finance & Accounting, vol. 5, no. 6, pp. 5929–5936, 2025, doi: 10.38035/dijefa.v5i6.3713.
M. I. Nor, “Examining Climate Shocks and Currency Resilience in a Stateless Economy: Evidence from Somalia’s Informal Exchange Market,” Frontiers in Climate, vol. 7, no. 1, pp. 1–23, 2025, doi: 10.3389/fclim.2025.1615226.
M. Gertler and P. Karadi, “Monetary policy surprises, credit costs, and economic activity,” American Economic Journal: Macroeconomics, vol. 7, no. 1, pp. 44–76, 2015, doi: 10.1257/mac.20130329.
R. Clarida, J. Galí, and M. Gertler, “The Science of Monetary Policy: A New Keynesian Perspective,” J. Econ. Lit., vol. 37, no. 4, pp. 1661–1707, 1999, doi: 10.1257/jel.37.4.1661.
M. T. Kinda and H. Barry, “Exchange Rate Pass-through to Import Prices: Evidence from a Heterogeneous Panel of West African Countries,” Rev. Dev. Econ., vol. 25, no. 4, pp. 1–19, 2021, doi: 10.1111/rode.12803.
H. I. Gündüz, “The Commodity Prices Shocks on Economic Activity in the Presence of a Trading Relationship: a Global VAR Analysis,” in Ekonometride Güncel Yöntemler ve Uygulamalar, Istanbul University Press, 2021, pp. 251–266. doi: 10.26650/b/ss10.2021.013.15.
B. Hofmann and B. Bogdanova, “Taylor rules and monetary policy: a global ‘Great Deviation’?,” BIS Quarterly Review, Bank for International Settlements, Basel, 2012.
Paulina, “Analisis Dinamis Hubungan Antara Harga Saham dan Variabel Makroekonomi [Dynamic Analysis of the Relationship Between Stock Prices and Macroeconomic Variables],” Jurnal Manajemen Strategi dan Aplikasi Bisnis, vol. 4, no. 1, pp. 77–90, Mar. 2021, doi: 10.36407/jmsab.v4i1.278.
J. Baffes, M. A. Kose, F. Ohnsorge, and M. Stocker, “The Great Plunge in Oil Prices: Causes, Consequences, and Policy Responses,” World Bank Policy Research Note No. 1, World Bank, Washington DC, 2015.
H. Lütkepohl, New Introduction to Multiple Time Series Analysis. Berlin Heidelberg: Springer, 2005.
L. Coroneo, “Forecasting for monetary Policy,” arXiv preprint arXiv: 2501.07386, 2025.
E. A. Omotoye and B. S. Rotimi, “Stationarity in Prophet Model Forecast: Performance Evaluation Approach,” American Journal of Theoretical and Applied Statistics, vol. 14, no. 3, pp. 109–117, 2025, doi: 10.11648/j.ajtas.20251403.12.
R. R. Barry and I. Bernarto, “Spurious Regression Analysis on Time Series Data from Factors Affecting Indonesia Human Development Index in 1990-2017,” Jurnal Ilmiah Manajemen Bisnis dan Inovasi Universitas SAM Ratunglangi, vol. 7, no. 3, pp. 592–611, 2020, doi: 10.35794/jmbi.v7i3.30608.
H. Rosyidah, R. Rahmawati, and A. Prahutama, “Pemodelan Vector Autoregressive X (VARX) untuk Meramalkan Jumlah Uang Beredar di Indonesia [Vector Autoregressive X (VARX) Modeling to Forecast the Money Supply in Indonesia],” JURNAL GAUSSIAN, vol. 6, no. 3, pp. 333–343, 2017, doi: 10.14710/j.gauss.6.3.333-343.
D. Bauer, “Information-Criterion-Based Lag Length Selection in Vector Autoregressive Approximations for I(2) Processes,” Econometrics, vol. 11, no. 11, pp. 1–11, 2023, doi: 10.3390/econometrics11020011.
R. M. Kunst, “Vector autoregressions,” Lecture notes, University of Vienna, 2007.
I. U. Moffat and E. A. Akpan, “White Noise Analysis: A Measure of Time Series Model Adequacy,” Appl. Math. (Irvine)., vol. 10, no. 1, pp. 989–1003, 2019, doi: 10.4236/am.2019.1011069.
H. Lütkepohl and M. Krätzig, Applied Time Series Econometrics. Cambridge: Cambridge University Press, 2004.
B. Pfaff, “VAR, SVAR and SVEC Models: Implementation Within R Package vars,” J. Stat. Softw., vol. 27, no. 4, pp. 1–32, 2008, doi: 10.18637/jss.v027.i04.
C. R. Ferry, Irwan, and Nurfadilah, “Peramalan Tingkat Suku Bunga Pasar Uang Antar Bank (PUAB) dengan Vector Autoregressive Exogenous (VARX),” Jurnal MSA, vol. 6, no. 1, pp. 51–60, 2018.
N. A. Salsabila, S. Wahyuningsih, and I. Purnamasari, “Perbandingan Vector Autoregressive Exogenous (VARX) untuk Meramalkan Data Ekspor dan Impor Total di Indonesia [Comparison of Vector Autoregressive Exogenous (VARX) for Forecasting Total Export and Import Data in Indonesia],” Jambura Journal of Probability and Statistics, vol. 3, no. 2, pp. 128–140, 2022, doi: 10.34312/jjps.v3i2.15440.
A. Mubarak and M. A. Samsuddin, “Analisis Hubungan Kausalitas Pertumbuhan Ekonomi, Jumlah Penduduk Miskin dan Ekspor Industri di Provinsi Jawa Barat [Analysis of the Causal Relationship between Economic Growth, Number of Poor People, and Industrial Exports in West Java Province],” JUKONI: Jurnal Ilmu Ekonomi dan Bisnis, vol. 2, no. 2, pp. 39–46, 2025, doi: 10.70134/jukoni.v2i2.519.
M. C. Wulandari and R. A. Wicaksono, “Analisis Determinan Perdagangan Migas dan Non-Migas Terhadap Inflasi Indonesia [Analysis of Determinants of Oil and Gas and Non-Oil and Gas Trade on Inflation in Indonesia],” Jurnal GeoEkonomi, vol. 14, no. 1, pp. 72–83, 2023, doi: 10.36277/geoekonomi.v14i1.270.
A. Checo, F. Grigoli, and D. Sandri, “Monetary Policy Transmission in Emerging Markets: Proverbial Concerns, Novel Evidence,” BIS Working Papers No. 1153, Bank for International Settlements, Basel, 2024.
DOI: http://dx.doi.org/10.30829/zero.v10i1.27949
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Publisher : Department of Mathematics Faculty of Science and Technology Universitas Islam Negeri Sumatera Utara Medan | ||||
| ||||
| | | | |
