Exploring the Metric Chromatic Number of Uniform, Centralized Uniform, and Cycle Uniform Theta Graphs
Abstract
Metric coloring allows adjacent vertices of a graph to share the same color provided that their associated distance vectors are distinct, leading to the concept of the metric chromatic number. This notion is closely related to problems of vertex distinguishability and resource allocation in network-like structures. In this paper, we present the first exact determination of the metric chromatic number for three families of theta type graphs: uniform theta graphs, centralized uniform theta graphs, and a newly introduced class called the cycle uniform theta graph, obtained by cyclically arranging uniform theta subgraphs. The proposed construction enables an investigation of how cyclic configurations influence metric coloring behavior. Using a constructive metric coloring approach, exact values of the metric chromatic number are obtained. It is shown that the uniform theta graph and the centralized uniform theta graph both satisfy for all positive integers and . For the cycle uniform theta graph , the metric chromatic number equals when and have the same parity or when is odd and is even. In contrast, when is even and is odd. This latter case arises because the longest path in the cyclic structure has odd length, forcing the graph to have chromatic number three. Since the graph is connected and its chromatic number is at most three, this structural constraint directly implies that three colors are also necessary for a valid metric coloring.
Keywords
Full Text:
PDFReferences
B. Omoomi, E. Roshanbin, and M. Vahid Dastjerdi, ‘A Polynomial Time Algorithm to Find the Star Chromatic Index of Trees’, The Electronic Journal of Combinatorics, vol. 28, no. 1, p. P1.6, Jan. 2021, doi: 10.37236/9202.
Z. Dvořák and C. Feghali, ‘An Update on Reconfiguring $10$-Colorings of Planar Graphs’, The Electronic Journal of Combinatorics, vol. 27, no. 4, p. P4.51, Dec. 2020, doi: 10.37236/9391.
M. Chudnovsky, A. Kabela, B. Li, and P. Vrána, ‘Forbidden Induced Pairs for Perfectness and $omega$-Colourability of Graphs’, The Electronic Journal of Combinatorics, vol. 29, no. 2, p. P2.21, May 2022, doi: 10.37236/10708.
S. D. Pasham, ‘Network Topology Optimization in Cloud Systems Using Advanced Graph Coloring Algorithms’, Research and Analysis Journal, vol. 6, no. 11, pp. 01–25, Nov. 2023, doi: 10.18535/raj.v6i11.426.
D. R. Wood, ‘Nonrepetitive Graph Colouring’, The Electronic Journal of Combinatorics, vol. 1000, p. DS24, Sep. 2021, doi: 10.37236/9777.
D. Chawin and I. Haviv, ‘On the Subspace Choosability in Graphs’, The Electronic Journal of Combinatorics, vol. 29, no. 2, p. P2.20, May 2022, doi: 10.37236/10765.
M. Chudnovsky, S. Huang, T. Karthick, and J. Kaufmann, ‘Square-Free Graphs with no Induced Fork’, The Electronic Journal of Combinatorics, vol. 28, no. 2, p. P2.20, May 2021, doi: 10.37236/9144.
C. Antony and S. M. A., ‘Star Colouring and Locally Constrained Graph Homomorphisms’, The Electronic Journal of Combinatorics, vol. 32, no. 3, p. P3.43, Sep. 2025, doi: 10.37236/12949.
N. Kusumastuti, Raventino, and F. Fran, ‘The diachromatic number of double star graph’, Journal of Physics: Conference Series, vol. 2106, no. 1, p. 012024, Nov. 2021, doi: 10.1088/1742-6596/2106/1/012024.
R. Adawiyah, A. Pujiyanto, A. I. Kristiana, D. Dafik, R. M. Prihandini, and S. Susanto, ‘Metric Coloring of Pencil Graphs’, JTAM (Jurnal Teori dan Aplikasi Matematika), vol. 9, no. 1, p. 68, Jan. 2025, doi: 10.31764/jtam.v9i1.27242.
B. Sooryanarayana and S. Agani Shanmukha, ‘Graphs of Neighborhood Metric Dimension Two’, Journal of Mathematical and Fundamental Sciences, vol. 53, no. 1, pp. 118–133, Jun. 2021, doi: 10.5614/j.math.fund.sci.2021.53.1.9.
S. Prabhu, T. J. Janany, and S. Klavžar, ‘Metric dimensions of generalized Sierpiński graphs over squares’, Applied Mathematics and Computation, vol. 505, p. 129528, Nov. 2025, doi: 10.1016/j.amc.2025.129528.
M. Marsidi, I. H. Agustin, D. Dafik, R. Alfarisi, and H. Siswono, ‘On The Metric Dimension of Some Operation Graphs’, CAUCHY: Jurnal Matematika Murni dan Aplikasi, vol. 5, no. 3, pp. 88–94, Dec. 2018, doi: 10.18860/ca.v5i3.5331.
Z. Shao, S. M. Sheikholeslami, P. Wu, and J.-B. Liu, ‘The Metric Dimension of Some Generalized Petersen Graphs’, Discrete Dynamics in Nature and Society, vol. 2018, pp. 1–10, Aug. 2018, doi: 10.1155/2018/4531958.
S. Nawaz, M. Ali, M. A. Khan, and S. Khan, ‘Computing Metric Dimension of Power of Total Graph’, IEEE Access, vol. 9, pp. 74550–74561, 2021, doi: 10.1109/ACCESS.2021.3072554.
S. Hayat, A. Khan, M. Y. H. Malik, M. Imran, and M. K. Siddiqui, ‘Fault-Tolerant Metric Dimension of Interconnection Networks’, IEEE Access, vol. 8, pp. 145435–145445, 2020, doi: 10.1109/ACCESS.2020.3014883.
V. J. A. Cynthia, M. Ramya, and S. Prabhu, ‘Local Metric Dimension of Certain Classes of Circulant Networks’, Journal of Advanced Computational Intelligence and Intelligent Informatics, vol. 27, no. 4, pp. 554–560, Jul. 2023, doi: 10.20965/jaciii.2023.p0554.
X. Zhang and M. Naeem, ‘Metric Dimension of Crystal Cubic Carbon Structure’, Journal of Mathematics, vol. 2021, pp. 1–8, Jul. 2021, doi: 10.1155/2021/3438611.
S. Prabhu, D. S. R. Jeba, and S. Stephen, ‘Metric dimension of star fan graph’, Scientific Reports, vol. 15, no. 1, p. 102, Jan. 2025, doi: 10.1038/s41598-024-83562-6.
É. Bonnet and N. Purohit, ‘Metric Dimension Parameterized By Treewidth’, Algorithmica, vol. 83, no. 8, pp. 2606–2633, Aug. 2021, doi: 10.1007/s00453-021-00808-9.
J. Muentes, A. J. Becker, A. T. Baraviera, and É. Scopel, ‘Metric Mean Dimension and Mean Hausdorff Dimension Varying the Metric’, Qualitative Theory of Dynamical Systems, vol. 23, no. 1, p. 261, Nov. 2024, doi: 10.1007/s12346-024-01100-1.
S. Nazeer, M. Hussain, A. U. Rehman, and A. H. Ali, ‘On metric dimension of symmetrical planer pyramid related graphs’, Afrika Matematika, vol. 36, no. 1, p. 54, Mar. 2025, doi: 10.1007/s13370-025-01253-5.
L. S. Mhagama, M. F. Nadeem, and M. N. Husin, ‘On the edge metric dimension of some classes of cacti’, AIMS Mathematics, vol. 9, no. 6, pp. 16422–16435, 2024, doi: 10.3934/math.2024795.
S. Nithya and V. Prisci, ‘On the metric dimension of extended zero divisor graphs’, Gulf Journal of Mathematics, vol. 16, no. 1, pp. 205–214, Mar. 2024, doi: 10.56947/gjom.v16i1.1801.
G. Chartrand, F. Okamoto, and P. Zhang, ‘The metric chromatic number of a graph’, AUSTRALASIAN JOURNAL OF COMBINATORICS, vol. 44, pp. 273–286, 2009, doi: 10.5281/zenodo.18027563.
E. Waluyo and A. Fatahillah, ‘The Metric Coloring of Related Wheel Graphs’, KADIKMA: Jurnal Matematika dan Pendidikan Matematika, vol. 13, no. 3, pp. 219–224, 2022, doi: 10.19184/kdma.v13i3.36894.
A. I. Kristiana, A. H. Khusnul, and D. Dafik, ‘Locating Metric Coloring on The Cherry Blossom, Sun Flower and Closed Dutch Windmill Graphs’, CAUCHY: Jurnal Matematika Murni dan Aplikasi, vol. 10, no. 2, pp. 777–789, Aug. 2025, doi: 10.18860/cauchy.v10i2.33636.
M. Y. Rohmatulloh, Slamin, A. I. Kristiana, Dafik, and R. Alfarisi, ‘On metric chromatic number of comb product of ladder graph’, Journal of Physics: Conference Series, vol. 1836, no. 1, p. 012026, Mar. 2021, doi: 10.1088/1742-6596/1836/1/012026.
F. Fujie-Okamoto, W. Renzema, and P. Zhang, ‘The $k$-metric colorings of a graph’, Mathematica Bohemica, vol. 137, no. 1, pp. 45–63, 2012, doi: 10.21136/MB.2012.142787.
H. Q. Mohammad, S. Haleem. Ibrahem, and L. A. Khaleel, ‘The Metric Chromatic Number of Zero Divisor Graph of a Ring Z n’, International Journal of Mathematics and Mathematical Sciences, vol. 2022, pp. 1–4, Sep. 2022, doi: 10.1155/2022/9069827.
J. Chybowska-Sokół, K. Junosza-Szaniawski, and K. Węsek, ‘Coloring distance graphs on the plane’, Discrete Mathematics, vol. 346, no. 7, p. 113441, Jul. 2023, doi: 10.1016/j.disc.2023.113441.
E. E. Demekhin, A. M. Raigorodskii, and O. I. Rubanov, ‘Distance graphs having large chromatic numbers and containing no cliques or cycles of a given size’, Sbornik: Mathematics, vol. 204, no. 4, pp. 508–538, Apr. 2013, doi: 10.1070/SM2013v204n04ABEH004310.
A. Kupavskiy, ‘On the chromatic number of R n with an arbitrary norm’, Discrete Mathematics, vol. 311, no. 6, pp. 437–440, Mar. 2011, doi: 10.1016/j.disc.2010.12.005.
J. I. Brown, ‘The complexity of generalized graph colorings’, Discrete Applied Mathematics, vol. 69, no. 3, pp. 257–270, Aug. 1996, doi: 10.1016/0166-218X(96)00096-0.
R. W. Putra and Y. Susanti, ‘On total edge irregularity strength of centralized uniform theta graphs’, AKCE International Journal of Graphs and Combinatorics, vol. 15, no. 1, pp. 7–13, Apr. 2018, doi: 10.1016/j.akcej.2018.02.002.
DOI: http://dx.doi.org/10.30829/zero.v10i1.27103
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Publisher : Department of Mathematics Faculty of Science and Technology Universitas Islam Negeri Sumatera Utara Medan | ||||
| ||||
| | | | |
