Bayesian Path Modeling Simulation for Stunting Analysis
Abstract
This research assesses the interaction between sample size, model complexity, error variance, and their collective impact on the execution of Bayesian path modeling within the context of stunting, using Monte Carlo simulation over 100 datasets over 18 different conditions. The results indicate that the sample size positively impacts the stability of the model, but the more intricate the model and the more noise there is in the data, the greater the effect. A 0.3 error variance unpredictedly lowered the RMSE on various complex scenarios (eg. for nonlinear structures, it decreased from 0.222 to 0.079), and low error variance, combined with nonlinear pathways, led to lower CI coverage (<0.85) and lower ESS, indicating there was difficulty recovering the true parameters A unique contribution of the research is that, in Bayesian modeling, sample size is not the only driver of model complexity, noise, and stunting research. This information is beneficial in providing evidence on how to choose priors, structure models, and conclusively derive results for Bayesian causal analysis in the field of public health.
Keywords
References
T. Vaivada, N. Akseer, S. Akseer, A. Somaskandan, M. Stefopulos, and Z. A. Bhutta, “Stunting in childhood: an overview of global burden, trends, determinants, and drivers of decline,” Am. J. Clin. Nutr., vol. 112, no. Supplement_2, pp. 777S-791S, 2020, doi: 10.1093/ajcn/nqaa159.
B. J. Akombi, B. Akombi-Inyang, A. M. N. Renzaho, and D. Merom, “Child malnutrition in sub-Saharan Africa: A meta-analysis of demographic and health surveys (2006–2016),” PLoS One, vol. 15, no. 5, p. e0233250, 2020, doi: 10.1371/journal.pone.0233250.
D. K. Kinyoki, J. A. Berkley, G. M. Moloney, A. Osgood-Zimmerman, L. E. Schaeffer, and S. I. Hay, “Mapping child growth failure in Africa between 2000 and 2015,” Nature, vol. 555, pp. 41–47, 2020, doi: 10.1038/nature25760.
B. Muthén, “Applications of structural equation modeling in health and behavioral sciences,” Annu. Rev. Public Health, vol. 42, pp. 85–102, 2021, doi: 10.1146/annurev-publhealth-012420-105005.
R. van de Schoot, S. D. Winter, O. Ryan, M. Zondervan-Zwijnenburg, and S. Depaoli, “A systematic review of Bayesian articles in psychology (2010–2020),” Psychol. Methods, vol. 26, no. 3, pp. 307–325, 2021, doi: 10.1037/met0000431.
L. Song and S.-Y. Lee, “Advances in Bayesian SEM: Estimation, model comparison, and applications,” Psychol. Methods, vol. 28, no. 4, pp. 518–534, 2023, doi: 10.1037/met0000527.
S. Kim, C. Cao, and Y. Wang, “Bayesian structural equation modeling with small sample sizes: A simulation study,” Struct. Equ. Model., vol. 27, no. 3, pp. 318–337, 2020, doi: 10.1080/10705511.2019.1640321.
S. Depaoli, J. P. Clifton, and R. van de Schoot, “Bayesian structural equation modeling: Current trends and emerging issues,” Annu. Rev. Stat. Its Appl., vol. 10, pp. 231–254, 2023, doi: 10.1146/annurev-statistics-033021-125348.
S. C. Smid and S. D. Winter, “Dangers of the Defaults: A Tutorial on the Impact of Default Priors When Using Bayesian SEM With Small Samples,” Front. Psychol., vol. 11, p. 611963, 2020, doi: 10.3389/fpsyg.2020.611963.
N. A. Mohamed and Others, “Application of Bayesian Structural Equation Modeling in Construction and Demolition Waste Management,” PLoS One, vol. 19, 2024, doi: 10.1371/journal.pone.0290376.
H. Hong and Others, “Applying SEM, Exploratory SEM, and Bayesian SEM to Evaluate the Structure of Personality: A Monte Carlo Simulation,” Behav. Sci. (Basel)., vol. 6, no. 1, p. 7, 2024, doi: 10.3390/bs6010007.
J. O. Uanhoro, “Bayesian Structural Equation Models of Correlation Matrices,” Struct. Equ. Model., 2024, doi: 10.1080/10705511.2024.2306532.
L. Zhang and M. Tuerde, “Bayesian Analysis of Nonlinear Quantile Structural Equation Model with Possible Non-Ignorable Missingness,” Mathematics, vol. 13, no. 19, p. 3094, 2025, doi: 10.3390/math13193094.
Y.-W. Cho and Others, “Multilevel Latent Differential Structural Equation Model with Monte Carlo Simulations,” Struct. Equ. Model., 2024, doi: 10.1080/00273171.2024.2347959.
A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin, Bayesian Data Analysis (3rd ed.). CRC Press, 2020. doi: 10.1201/9780429258411.
R. McElreath, Statistical Rethinking: A Bayesian Course with Examples in R and Stan. Boca Raton, FL: Chapman and Hall/CRC, 2020.
J. K. Kruschke, “Bayesian Analysis Reporting Guidelines (BARG),” Nat. Hum. Behav., vol. 5, no. 10, pp. 1282–1291, 2021, doi: 10.1038/s41562-021-01177-7.
D. Mindrila, “Bayesian structural equation modeling: Goodness of fit, parameter estimation precision and sample size effects,” Preprint, 2024, doi: 10.20944/preprints202405.0065.v13.
F. Yanuar and A. Zetra, “The Performance of Bayesian Analysis in Structural Equation Modelling,” Pakistan J. Stat. Oper. Res., vol. 18, no. 3, pp. 575–587, 2022, doi: 10.18187/pjsor.v18i3.4096.
S.-Y. Lee and Y. Xia, “Advances in Bayesian SEM under complex structural constraints and missingness,” Struct. Equ. Model., vol. 32, no. 1, pp. 88–112, 2025, doi: 10.1080/10705511.2024.2349017.
E. Karadağ, S. Şen, and S. Demir, “Bayesian network modeling in educational and psychological research: A simulation-based evaluation,” Psychol. Methods, vol. 29, no. 2, pp. 245–263, 2024, doi: 10.1037/met0000589.
H. Yang and J. C. Smith, “Evaluating MCMC convergence and Effective Sample Size in modern Bayesian models: A comprehensive simulation,” J. Comput. Graph. Stat., vol. 30, no. 4, pp. 923–942, 2021, doi: 10.1080/10618600.2021.1936804.
M. B. Hooten and N. T. Hobbs, Bayesian Hierarchical Models: Ecosystem Management Applications. CRC Press, 2020. doi: 10.1201/9780429288197.
S. C. Smid, D. M. McNeish, M. Miočević, and R. van de Schoot, “Bayesian versus frequentist estimation in structural equation models with small sample sizes,” Struct. Equ. Model., vol. 27, no. 1, pp. 131–161, 2020, doi: 10.1080/10705511.2019.1577140.
R. Van de Schoot et al., “Bayesian statistics and modelling,” Nat. Rev. Methods Prim., vol. 1, no. 1, 2021, doi: 10.1038/s43586-020-00001-2.
J. K. Kruschke, Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan (3rd ed.). Academic Press, 2021. doi: 10.1016/C2019-0-02035-6.
S. van Erp, “Bayesian Regularized SEM: Current Capabilities and Constraints,” Psych, vol. 5, no. 3, pp. 814–835, 2023, doi: 10.3390/psych5030054.
M. B. Hooten and N. T. Hobbs, Bayesian hierarchical models: A practical approach. CRC Press, 2020. doi: 10.1201/9780429189339.
Y. Wang, H. Li, and X. Chen, “Bayesian parameter estimation in structural models with varying sample sizes,” J. Stat. Comput. Simul., vol. 91, no. 12, pp. 2405–2422, 2021, doi: 10.1080/00949655.2021.1968754.
R. Patel and S. Kumar, “Effects of noise and nonlinearity on Bayesian SEM performance: A simulation study,” Behav. Res. Methods, vol. 54, no. 5, pp. 2103–2117, 2022, doi: 10.3758/s13428-022-01914-3.
L. Rodriguez, F. Gomez, and J. Silva, “Robustness of Bayesian path models under high error variance,” Psychometrika, vol. 88, no. 3, pp. 561–578, 2023, doi: 10.1007/s11336-022-09850-7.
A. Singh and P. Verma, “Confidence interval coverage in Bayesian SEM: Insights from Monte Carlo simulations,” Struct. Equ. Model. A Multidiscip. J., vol. 31, no. 2, pp. 175–192, 2024, doi: 10.1080/10705511.2023.2278896.
DOI: http://dx.doi.org/10.30829/zero.v10i1.26824
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Publisher : Department of Mathematics Faculty of Science and Technology Universitas Islam Negeri Sumatera Utara Medan | ||||
| ||||
| | | | |
