Prediction of Heart Disease Risk Based on Patient Health History Using the Support Vector Machine (SVM) Algorithm

Septian Simatuppang, Rizki Ramadhansyah, Rustianna Tumanggor, Eric Pratama Tan, Syafrizal Amri Fajar

Abstract


Heart disease remains the leading cause of death worldwide, with early detection being critical to improving patient outcomes. This study develops a heart disease risk prediction model using the Support Vector Machine (SVM) algorithm. A dataset of 303 patient records with 14 clinical attributes was used, including age, blood pressure, cholesterol, and chest pain type. Data preprocessing, normalization, and feature selection were performed to optimize the model. Evaluation metrics such as accuracy (92%), precision (90%), recall (96%), and F1-score (93%) demonstrated significant improvements over the baseline model. These results highlight the SVM model’s effectiveness as a tool for early heart disease detection, offering potential for enhanced predictive healthcare, particularly in Indonesian clinical settings. 


Keywords


Heart disease; Medical history; Risk prediction; Support Vector Machine; Early detection

References


Arifuddin, A., Buana, G. S., Vinarti, R. A., & Djunaidy, A. (2024). Performance Comparison Comparison of of Decision Decision Tree Tree and and Support Support Vector Vector Performance Machine Algorithms Algorithms for for Heart Heart Failure Failure Prediction Prediction Machi. Procedia Computer Science, 234, 628–636. https://doi.org/10.1016/j.procs.2024.03.048

A. S. Prabowo and F. I. Kurniadi, "Improved parameter selection in support vector machines with a grid search method," J. Syst. Comput. Sci., vol. 24, no. 2, pp. 132-141, 2015.

Ben-david, S. (2014). Understanding Machine Learning: From Theory to Algorithms.

Chawla, I., Karthikeyan, L., & Mishra, A. K. (2020). A review of remote sensing applications for water security: Quantity, quality, and extremes. Journal of Hydrology, 585(March), 124826. https://doi.org/10.1016/j.jhydrol.2020.124826

Davis, J., & Goadrich, M. (2006). The Relationship Between Precision-Recall and ROC Curves. 233–240.

Du, G., et al., “Integrated support vector machine with improved PSO: a two stage adaptive PSO algorithm,” Computers & Electrical Engineering, 2025. https://doi.org/10.1016/j.cie.2025.111300

F. M. Natsir, R. Y. Bakti, and T. Wahyuni. (2024). Arus Jurnal Sains dan Teknologi (AJST) Analisis Deteksi Dini Penyakit Jantung dengan Pendekatan Support Vector Machine pada Data Pasien. 2(2).

Kumar, R. et.al (2025). A comprehensive review of machine learning for heart disease prediction: challenges, trends, ethical considerations, and future directions. Front. Artif. Intell. Sec. Medicine and Public Health. Volume 8 - 2025 | https://doi.org/10.3389/frai.2025.1583459

M. Altalhan, A. Algarni and M. Turki-Hadj Alouane, "Imbalanced Data Problem in Machine Learning: A Review," in IEEE Access, vol. 13, pp. 13686-13699, 2025, doi: 10.1109/ACCESS.2025.3531662.

Hidayat, R., Sy, Y. S., Sujana, T., Husnah, M., & Saputra, H. T. (2024). Implementasi Machine Learning Untuk Prediksi Penyakit Jantung Menggunakan Algoritma Support Vector Machine. 5(2), 161–168.

Kohavi, R., & Edu, S. (1993). A Study of Cross-Validation and Bootstrap for Accuracy Estimation and M o d e l Selection. 1137–1143.

Lee, D. D., Laboratories, B., Hill, M., & Ý, H. S. S. (n.d.). Algorithms for Non-negative Matrix Factorization. 1.

M. R. Maulana, A. Sucipto, and H. M. Mulyo. (2024). Optimisasi Parameter Support Vector Machine Dengan Particle Swarm Optimization Untuk Peningkatan Klasifikasi Diabetes. Jurnal Informatika Teknologi dan Sains (JINTEKS) E-ISSN. 802–812.

No, V., Hal, A., Agus, I. M., Gunawan, O., Ayu, I. D., Saraswati, I., Gede, I. D., Agung, R., & Eka, I. P. (2023). Klasifikasi Penyakit Jantung Menggunakan Algoritma Decision Tree Series C4 . 5 Dengan Rapidminer. 5(2), 73–83.

Prabowo, A. S., & Kurniadi, F. I. (2023). Analisis Perbandingan Kinerja Algoritma Klasifikasi dalam Mendeteksi Penyakit Jantung.

R. K. Gupta, V. Gupta, and A. K. Sharma, "A study of SMOTE and its application to imbalanced data sets," International Journal of Computer Applications, vol. 8, no. 8, pp. 39-45, 2010.

S. Simatupang, R. Ramadhansyah, R. Tumanggor, E. P. Tan, and S. A. Fajar, "Prediction of heart disease risk based on patient health history using the Support Vector Machine (SVM) algorithm," Zero: Jurnal Sains, Matematika dan Terapan, vol. 10, no. 1, pp. 1-9, 2024.

S. Sitanggang, N. Nicholas, V. Wilson, A. R. A. Sinaga, and A. D. Simanjuntak, "Implementasi data mining untuk memprediksi penyakit jantung menggunakan metode k-nearest neighbor dan logistic regression," Jurnal Tekinkom (Teknik Informasi dan Komputer), vol. 5, no. 2, pp. 493-499, Dec. 2022. https://doi.org/10.37600/tekinkom.v5i2.698.

Syaidah, I. B., Surono, S., & Goh, K. W. (2024). Dynamic Weighted Particle Swarm Optimization - Support Vector Machine Optimization in Recursive Feature Elimination Feature Selection. 23(3), 627–640. https://doi.org/10.30812/matrik.v23i3.3963

Tohka, J., & Gils, M. Van. (2021). Evaluation of machine learning algorithms for health and wellness applications : A tutorial. Computers in Biology and Medicine, 132(February), 104324. https://doi.org/10.1016/j.compbiomed.2021.104324

Vladimir N. Vapnik, " The Nature of Statistical Learning Theory”. New York: Springer New York, 2021. https://doi.org/10.1007/978-1-4757-3264-1

V. Vapnik, The Nature of Statistical Learning Theory, 2nd ed. New York, NY, USA: Springer-Verlag, 2000




DOI: http://dx.doi.org/10.30829/zero.v9i2.26087

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Publisher :
Department of Mathematics
Faculty of Science and Technology
Universitas Islam Negeri Sumatera Utara Medan
📱 WhatsApp:085270009767 (Admin Official)
SINTA 2 Google Scholar CrossRef Garuda DOAJ