Choosing the Right Tool: Practical Considerations for GLMM and GEE in Longitudinal Studies, with a Focus on Data Challenges

Pardomuan Robinson Sihombing, Erfiani Erfiani, Khairil Anwar Notodiputro, Anang Kurnia

Abstract


The proposed research systematically reviews the comparative issues between GLMM and GEE for longitudinal data. The review discusses the competing arguments regarding the practical strengths and weaknesses of the two arrests. Empirical evidence demonstrates that GLMM generally provides subject-specific estimates and performs better than GEE in hierarchical and individual variance. In contrast, GEE provides resilient population-level findings, which are crucial for policy. The choice of method depends on the data structure and scope of inference. GLMM is consistently better when characterizing individuals, for example, in studies where we assume random effects are drawn from a complex distribution. GEEs shine most brightly in large datasets, obtaining robust population-level estimates even when the working correlation is misspecified. Finally, the results provide hands-on recommendations for researchers from various domains who apply statistical models to longitudinal studies to select solid, context-fitting statistical models for long-term studies.

Keywords


GEE, GLMM, literature; longitudinal; panel

Full Text:

PDF

References


H. Zhang, Y. Xia, R. Chen, D. Gunzler, W. Tang, and X. Tu, "Modeling longitudinal binomial responses: Implications from two dueling paradigms," J. Appl. Stat., vol. 38, no. 11, pp. 2373–2390, 2011, doi: 10.1080/02664763.2010.550038.

H. Zhang, Q. Yu, C. Feng, D. Gunzler, P. Wub, and X. Tu, "A new look at the difference between the GEE and the GLMM When Modeling Longitudinal Count Modeling Longitudinal Count Responses," J. Appl. Stat., vol. 39, no. 9, pp. 2067–2079, 2017.

M. B. M. B. K. Gawarammana and M. R. Sooriyarachchi, "Comparison of methods for analyzing binary repeated measures data: A simulation-based study (comparison of methods for binary repeated measures)," Commun. Stat. Simul. Comput., vol. 46, no. 3, pp. 2103–2120, 2017, doi: 10.1080/03610918.2015.1035445.

J. Cui, "QIC program and model selection in GEE analyses," Stata J., vol. 7, no. 2, pp. 209–220, 2007, doi: 10.1177/1536867x0700700205.

S. Lipsitz and G. Fitzmaurice, "Generalized estimating equations for longitudinal data analysis," in Longitudinal Data Analysis, Division of General Medicine, Brigham and Women's Hospital, Boston, MA, United States: CRC Press, 2008, pp. 43–78. doi: 10.1201/9781420011579.ch3.

J. E. Overall and S. Tonidandel, "Robustness of Generalized Estimating Equation (GEE) tests of significance against misspecification of the error structure model," Biometrical J., vol. 46, no. 2, pp. 203–213, 2004, doi: 10.1002/bimj.200210017.

N. Hamzah and F. Z. Shaik Abdullah, "Analyzing longitudinal data by using population-averaged and subject-specific approaches," in AIP Conference Proceedings, Y. Z., A. N.A.M., G. N., M. W.Z.A.W., A. B. N.A., Z. W.M.K.A.W., D. W.S.W., O. N., S. S.B.M., K. F., A. Y. Y.N., and B. B., Eds., School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Kelantan, 16150, Malaysia: American Institute of Physics, 2024. doi: 10.1063/5.0225236.

A. P. Alencar, J. M. Singer, and F. M. M. Rocha, "Competing regression models for longitudinal data," Biometrical J., vol. 54, no. 2, pp. 214–229, 2012, doi: 10.1002/bimj.201100056.

P. R. Sihombing, K. A. Notodiputro, and B. Sartono, "Comparison of GEE and GLMM Methods for Longitudinal Data (Case Study: Determinants of the Percentage of Poor People in Indonesia, 2015-2019)," in AIP Conference Proceedings, A. L., R. null, P. R., P. G.E., and S. T.Y., Eds., BPS-Statistics Indonesia, Jl. Salemba Tengah No.36, RT.2/RW.4, Paseban, Senen, Daerah Khusus Ibukota, Jakarta, 10440, Indonesia: American Institute of Physics Inc., 2022, pp. 2015–2019. Doi: 10.1063/5.0103254.

M. B. de Melo, D. Daldegan-Bueno, M. G. Menezes Oliveira, and A. L. de Souza, "Beyond ANOVA and MANOVA for repeated measures: Advantages of generalized estimated equations and generalized linear mixed models and its use in neuroscience research," Eur. J. Neurosci., vol. 56, no. 12, pp. 6089–6098, 2022, doi: 10.1111/ejn.15858.

K. A. Hallgren, D. C. Atkins, and K. Witkiewitz, "Aggregating and analyzing daily drinking data in clinical trials: A comparison of type I errors, power, and bias," J. Stud. Alcohol Drugs, vol. 77, no. 6, pp. 986–991, 2016, doi: 10.15288/jsad.2016.77.986.

S. An, Y. Zhang, and Z. Chen, "[Analysis of binary classification repeated measurement data with GEE and GLMMs using SPSS software].," Nan Fang Yi Ke Da Xue Xue Bao, vol. 32, no. 12, pp. 1777–1780, 2012, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84884175455&partnerID=40&md5=4f344c04f2925be5f6a8b16a6b56efed

S. Bawadi et al., “Pemahaman Konsep Matematika dengan Teknik Scaffoldıng: Systematic Literature Review,” MethodsX, vol. 14, no. 1, p. 100777, 2023, doi: 10.30653/003.202391.2.

A. Widjiseno and A. Eliyana, "Systematic Literature Review of Knowledge Management Strategy for Optimization Budgeting Function on Indonesian Local Legislative Council," Inf. Knowl. Manag., 2019, doi: 10.7176/ikm/9-4-04.

C. F. Durach, A. Wieland, and J. A. D. Machuca, "Antecedents and dimensions of supply chain robustness: a systematic literature review," Int. J. Phys. Distrib. Logist. Manag., vol. 45, pp. 118–137, 2015, doi: 10.1108/ijpdlm-05-2013-0133.

A. A. Samur, N. Coskunfirat, and O. Saka, "Comparison of predictor approaches for longitudinal binary outcomes: Application to anesthesiology data," PeerJ, vol. 2014, no. 1, 2014, doi: 10.7717/peerj.648.

J. Wang, J. Cao, S. Zhang, and C. Ahn, "A flexible sample size solution for longitudinal and crossover cluster randomized trials with continuous outcomes," Contemp. Clin. Trials, vol. 109, 2021, doi: 10.1016/j.cct.2021.106543.

M. C. Pardo and T. Pérez, "Analysis of housing prices by GEE and GLMM methodologies: A longitudinal study," Appl. Stoch. Model. Bus. Ind., vol. 29, no. 5, pp. 552–563, 2013, doi: 10.1002/asmb.1940.

T. Lin, R. Zhao, S. Tu, H. Wu, H. Zhang, and X. M. Tu, "On modeling relative risks for longitudinal binomial responses: implications from two dueling paradigms," Gen. Psychiatry, vol. 36, no. 2, pp. 1–5, 2023, doi: 10.1136/psych-2022-100977.

Y. Li et al., "Analyzing longitudinal binary data in clinical studies," Contemp. Clin. Trials, vol. 115, 2022, doi: 10.1016/j.cct.2022.106717.

M. Mittal, D. L. Harrison, D. M. Thompson, M. J. Miller, K. C. Farmer, and Y.-T. Ng, "An evaluation of three statistical estimation methods for assessing health policy effects on prescription drug claims," Res. Soc. Adm. Pharm., vol. 12, no. 1, pp. 29–40, 2016, doi: 10.1016/j.sapharm.2015.03.004.

H. Jiang, P. M. Kulkarni, C. H. Mallinckrodt, L. Shurzinske, G. Molenberghs, and I. Lipkovich, "Adjusting for Baseline on the Analysis of Repeated Binary Responses With Missing Data," Stat. Biopharm. Res., vol. 7, no. 3, pp. 238–250, 2015, doi: 10.1080/19466315.2015.1067251.

Y. Fouks, D. A. Vaughan, W. Neuhausser, Y. Cohen, A. S. Penzias, and D. Sakkas, "Intra-patientãnalysis of individual weight gain or loss between IVF cycles: cycle nowãnd transfer later," Hum. Reprod., vol. 39, no. 1, pp. 93–101, 2024, doi: 10.1093/humrep/dead244.

M. W. Ali and E. Talukder, "Analysis of longitudinal binary data with missing data due to dropouts," J. Biopharm. Stat., vol. 15, no. 6, pp. 993–1007, 2005, doi: 10.1080/10543400500266692.

B. Tantular, D. Y. Faidah, and F. Indrayatna, "QUASI LIKELIHOOD ON LINEAR MIXED EFFECT OF BINARY RESPONSE IN LONGITUDINAL DATA," Commun. Math. Biol. Neurosci., vol. 2025, pp. 1–13, 2025, doi: 10.28919/cmbn/9025.

A. Satty, H. Mwambi, and G. Molenberghs, "Different methods for handling incomplete longitudinal binary outcome due to missing at random dropout," Stat. Methodol., vol. 24, pp. 12–27, 2015, doi: 10.1016/j.stamet.2014.10.002.

M. L. Bell and G. K. Grunwald, "Small sample estimation properties of longitudinal count models," J. Stat. Comput. Simul., vol. 81, no. 9, pp. 1067–1079, 2011, doi: 10.1080/00949651003674144.

B. C. Sutradhar, "Two Stage Cluster Sampling Based Asymptotic Inferences in Survey Population Models for Longitudinal Count and Categorical Data," Sankhya A, vol. 83, no. 1, pp. 26–69, 2021, doi: 10.1007/s13171-019-00170-7.




DOI: http://dx.doi.org/10.30829/zero.v9i1.24602

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Publisher :
Department of Mathematics
Faculty of Science and Technology
Universitas Islam Negeri Sumatera Utara Medan
📱 WhatsApp:085270009767 (Admin Official)
SINTA 2 Google Scholar CrossRef Garuda DOAJ