Integer Linear Programming for Patchwork Production Planning Optimization with Demand Uncertainty

Afnaria Afnaria, Rina Filia Sari, Dhia Octariani, Isnaini Halimah Rambe

Abstract


This study develops an Integer Linear Programming (ILP) model to optimize monthly production planning for handcrafted patchwork MSMEs in Medan, Indonesia. The model incorporates key operational constraints, including production time, material and handling costs, labor, electricity, capital limits, and uncertain demand. Demand uncertainty is modeled deterministically using upper and lower bounds derived from historical field data. The objective function maximizes total profit while ensuring resource feasibility. A real-world case study involving five products across five artisans is presented, resulting in a maximum profit of IDR 12,469,900. The model is implemented using LINGO 18.0 and validated through sensitivity analyses. Results show that a 50% reduction in demand may reduce profit by up to 33.8%, while an increase in lead time can lower profit by 17.1%. These findings demonstrate the model’s robustness and its potential to serve as a decision-support tool for MSMEs facing volatile market conditions and operational constraints.

Keywords


Mathematical Modelling; Demand Uncertainty; Patchwork Products; Linear Programming; Production planning

Full Text:

PDF

References


Sutrisno, E. (2024). Wirausahawan Mapan, Ekonomi Nasional Kuat. Indonesia. https://indonesia.go.id/kategori/perdagangan/4994/wirausahawan-mapan-ekonomi-nasional-kuat?lang=1 (Retrieved January 11, 2024).

MNC Media. (2024). Sambut Era Society 5.0, Angela Tanoesoedibjo: Generasi Muda Harus Pacu Kemampuan Digital Natives. Ekonomi Bisnis. https://ekbis.sindonews.com/read/928887/34/sambut-era-society-50-angela-tanoesoedibjo-generasi-muda-harus-pacu-kemampuan-digital-natives-1667283100/10 (Retrieved January 11, 2024).

Anand, G., & Kodali, R. (2015). Use of linear programming for production planning in small scale industries. International Journal of Productivity and Performance Management, 64(5), 680-697. https://doi.org/10.1108/IJPPM-10-2013-0183

Choudhary, D., Shankar, R., & Mishra, A. (2019). Supply chain risk management in SMEs: A systematic review and research agenda. International Journal of Production Research, 57(24), 7679-7694. https://doi.org/10.1080/00207543.2019.1598590

Cruz, A. P. G., & Smith, J. C. (2016). A branch-and-price algorithm for production planning in mixed-model assembly lines. European Journal of Operational Research, 248(3), 1024-1037. https://doi.org/10.1016/j.ejor.2015.08.064

Brandenburg, M., Govindan, K., Sarkis, J., & Seuring, S. (2014). Quantitative models for sustainable supply chain management: Developments and directions. European Journal of Operational Research, 233(2), 299-312. https://doi.org/10.1016/j.ejor.2013.09.032

Akpan, E. P., & Udoh, E. S. (2014). Optimization of production planning using linear programming technique. International Journal of Scientific and Research Publications, 4(6), 1-6.

Nasiri, M., & Kazemi, M. (2015). A linear programming approach for supply chain optimization. International Journal of Production Economics, 160, 1-11. https://doi.org/10.1016/j.ijpe.2014.09.019

Ma, X., & Lee, J. H. (2015). Robust optimization for supply chain planning under uncertainty with consideration of cost uncertainty and demand variability. Computers & Chemical Engineering, 73, 1-14. https://doi.org/10.1016/j.compchemeng.2014.12.001

Adhikari, A., & Basu, S. (2015). Demand uncertainty and channel structure in an oligopolistic market. European Journal of Operational Research, 244(3), 985-995. https://doi.org/10.1016/j.ejor.2015.01.004

Eskandarpour, M., & Dejax, P. (2015). A bi-objective integrated production-distribution planning problem under demand uncertainty. International Journal of Production Economics, 165, 260-271. https://doi.org/10.1016/j.ijpe.2015.02.007

Al-Mutairi, M. M., & Khoury, S. S. (2014). Optimization of production planning using fuzzy linear programming. Journal of Manufacturing Systems, 33(4), 622-628. https://doi.org/10.1016/j.jmsy.2014.05.012

Arora, N., & Banerjee, R. (2018). Mathematical modelling and optimization in product lifecycle management. Journal of Manufacturing Technology Management, 29(7), 1165-1184. https://doi.org/10.1108/JMTM-09-2017-0183

Alborzi, M., & Afshari, A. (2016). A linear programming model for profit optimization in the automobile industry. Computers & Industrial Engineering, 91, 206-214. https://doi.org/10.1016/j.cie.2016.04.022

Eberle, D., Meyer, A., & Scheidler, A. (2018). Stochastic optimization of production planning with demand uncertainty. Computers & Operations Research, 96, 29-43. https://doi.org/10.1016/j.cor.2018.03.007

Saif, A., & Elhedhli, S. (2016). Robust optimization model for production planning with uncertain demand. International Journal of Production Economics, 181, 292-299. https://doi.org/10.1016/j.ijpe.2015.08.007

Chen, Y., Lin, C. T., & Luo, M. (2018). Production planning and scheduling optimization using a new hybrid GA approach. Applied Soft Computing, 62, 1077-1090. https://doi.org/10.1016/j.asoc.2017.10.018

Castaño, R., Hennelly, P., & Gavilanes, J. (2018). Applying simulation to the evaluation of uncertainty in demand for fast-moving consumer goods. Journal of Simulation, 12(1), 1-12. https://doi.org/10.1080/17477778.2017.1300051

Chiu, C. Y., Chuang, M. C., & Chiu, S. W. (2016). Mixed integer programming model for production planning with reentrant workstations. Computers & Industrial Engineering, 94, 49-58. https://doi.org/10.1016/j.cie.2016.01.018

Elyamany, A., & El-Sharkawy, A. (2017). An integrated approach for production planning using linear programming and simulation. Journal of Manufacturing Processes, 25, 331-344. https://doi.org/10.1016/j.jmapro.2016.12.012

Felfel, R. M., Aqlan, F., & Lam, S. S. (2016). A two-stage stochastic linear programming approach for multi-period, multi-product, multi-site supply chain planning under demand uncertainty. Computers & Industrial Engineering, 101, 39-52. https://doi.org/10.1016/j.cie.2016.08.011

Jung, H., & Jeong, B. (2016). A robust optimization model for production planning of perishables with demand uncertainty. International Journal of Production Economics, 180, 113-120. https://doi.org/10.1016/j.ijpe.2016.07.010

Shrouf, F., Ordieres-Meré, J., García-Sánchez, A., & Ortega-Mier, M. (2014). Optimizing the production scheduling of a single machine to minimize total energy consumption costs. Journal of Cleaner Production, 67, 197-207. https://doi.org/10.1016/j.jclepro.2013.12.024

Sun, M., & Ma, J. (2017). Integrated production planning and maintenance with energy-saving considerations. Computers & Operations Research, 78, 535-547. https://doi.org/10.1016/j.cor.2016.10.011

Jin, Y., & Liao, Y. (2017). Optimization of production scheduling with energy consumption considerations. Journal of Manufacturing Systems, 44, 82-94. https://doi.org/10.1016/j.jmsy.2017.06.002

Qi, J., Xu, X., & Gao, L. (2015). Sustainable production planning and scheduling with time-of-use electricity prices. Journal of Cleaner Production, 87, 307-318. https://doi.org/10.1016/j.jclepro.2014.09.022

Moradi, M., & Aghazadeh, A. (2017). A robust optimization model for production planning under demand and yield uncertainty. Journal of Manufacturing Systems, 44, 162-173. https://doi.org/10.1016/j.jmsy.2017.06.004

Vahidi, F., & Shakouri, G. H. (2017). A robust optimization model for production planning with demand uncertainty. Computers & Industrial Engineering, 103, 33-45. https://doi.org/10.1016/j.cie.2016.11.013




DOI: http://dx.doi.org/10.30829/zero.v9i1.24349

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Publisher :
Department of Mathematics
Faculty of Science and Technology
Universitas Islam Negeri Sumatera Utara Medan
📱 WhatsApp:085270009767 (Admin Official)
SINTA 2 Google Scholar CrossRef Garuda DOAJ