Drivers and Impacts of Agricultural Land Conversion: Regression Modelling with Spatial Dependence in West Bandung and Purwakarta Regencies, Indonesia
Abstract
Keywords
Full Text:
PDFReferences
Ambarwulan, W. et al. Modelling land use/land cover projection using different scenarios in the Cisadane Watershed, Indonesia: Implication on deforestation and food security. The Egyptian Journal of Remote Sensing and Space Science, 26 (2), pp. 273-283, 2023. https://doi.org/10.1016/j.ejrs.2023.04.002
T. D. T. Saadi and A. W. Wijayanto, “Machine learning applied to sentinel-2 and landsat-8 multispectral and medium-resolution satellite imagery for the detection of rice production areas in Nganjuk, East Java, Indonesia,” International Journal of Remote Sensing and Earth Sciences, vol. 18, no. 1, pp. 19–32, 2021. http://dx.doi.org/10.30536/j.ijreses.2021.v18.a3538
Shobur, M, et al. Enhancing food security through import volume optimization and supply chain communication models: A case study of East Java's rice sector. Journal of Open Innovation: Technology, Market, and Complexity, 11(1), 100462, 2025. https://doi.org/10.1016/j.joitmc.2024.100462
A. W. Wijayanto and S. R. Putri, “Estimating Rice production using machine learning models on multitemporal Landsat-8 satellite images (case study: Ngawi regency, East Java, Indonesia),” in 2022 IEEE international conference on cybernetics and computational intelligence (CyberneticsCom), 2022, pp. 280–285. https://doi.org/10.1109/CyberneticsCom55287.2022.9865364
Virtriana, et al. Identification of land cover change and spatial distribution based on topographic variations in Java Island. Ecological Frontiers, 44 (1), pp. 129-142, 2024. https://doi.org/10.1016/j.chnaes.2023.08.002
L. Gandharum, D. M. Hartono, A. Karsidi, and M. Ahmad, “Monitoring urban expansion and loss of agriculture on the north coast of west java province, Indonesia, using Google Earth engine and intensity analysis,” The Scientific World Journal, vol. 2022, no. 1, p. 3123788, 2022. https://doi.org/10.1155/2022/3123788
Hasan, M, et al. Sustainable agricultural knowledge-based entrepreneurship literacy in agricultural SMEs: Triple bottom line investigation. Journal of Open Innovation: Technology, Market, and Complexity, 11 (1), 100466, 2025. https://doi.org/10.1016/j.joitmc.2025.100466
Z. Zhang et al., “Socio-economic impacts of agricultural land conversion: A meta-analysis,” Land use policy, vol. 132, p. 106831, 2023. https://doi.org/10.1016/j.landusepol.2023.106831
B. Saputro, D. Priatna, R. Rosadi, and N. Miyazawa, “Spatial analysis of paddy field conversion in Purwakarta Regency, West Java, Indonesia,” Applied Environmental Studies, vol. 4, no. 1, pp. 22–29, 2023. https://doi.org/10.33751/injast.v4i1.6644
H. N. Serere and B. Resch, “Understanding the impact of geotagging on location inference models for accurate generalization to non-geotagged datasets,” Geomatica, vol. 76, no. 1, p. 100004, 2024. https://doi.org/10.1016/j.geomat.2024.100004
STIS, “Characteristics and Factors Influencing Conversion of Agricultural Land (Karakteristik dan Faktor-Faktor yang Memengaruhi Alih Fungsi Lahan Pertanian),” 2022.
STIS, “Mapping of Classification and Conversion of Agricultural Land Using Satellite Imagery (Pemetaan Klasifikasi dan Alih Fungsi Lahan Pertanian dengan Citra Satelit),” 2022.
Y. Ngongo et al., “Land cover change and food security in central Sumba: challenges and opportunities in the decentralization era in Indonesia,” Land, vol. 12, no. 5, p. 1043, 2023. https://doi.org/10.3390/land12051043
L. P. Fávero, P. Belfiore, and R. de F. Souza, "Chapter 14 - Simple and multiple regression models," in Data Science, Analytics and Machine Learning with R, L. P. Fávero, P. Belfiore, and R. de F. Souza, Eds. Academic Press, 2023, pp. 237–258. https://doi.org/10.1016/B978-0-12-824271-1.00007-X
D. Griffith and Y. Chun, “Spatial autocorrelation and Moran eigenvector spatial filtering,” in Handbook of regional science, Springer, 2021, pp. 1863–1893. https://doi.org/10.1007/978-3-662-60723-7_72
A. Kmoch, C. T. Harrison, J. Choi, and E. Uuemaa, “Spatial autocorrelation in machine learning for modelling soil organic carbon,” Ecol Inform, p. 103057, 2025. https://doi.org/10.1016/j.ecoinf.2025.103057
J. Le Gallo, “Cross-section spatial regression models,” in Handbook of regional science, Springer, 2021, pp. 2117–2139. https://doi.org/10.1007/978-3-662-60723-7_85
O. B. Samosir, R. Abd Karim, M. I. Fauzi, and S. M. Berliana, “Spatial Dependencies in Environmental Quality: Identifying Key Determinants,” Jurnal Aplikasi Statistika & Komputasi Statistik, vol. 16, no. 2, pp. 193–204, 2024. https://doi.org/10.34123/jurnalasks.v16i2.802
A. B. Santoso, A. C. Candra, and R. Nooraeni, “Development of a Hybrid Fuzzy Geographically Weighted K-Prototype Clustering and Genetic Algorithm for Enhanced Spatial Analysis: Application to Rural Development Mapping,” Jurnal Aplikasi Statistika & Komputasi Statistik, vol. 16, no. 2, pp. 122–139, 2024. https://doi.org/10.34123/jurnalasks.v16i2.789
S. R. Putri, A. W. Wijayanto, and S. Pramana, “Multi-source satellite imagery and point of interest data for poverty mapping in East Java, Indonesia: Machine learning and deep learning approaches,” Remote Sens Appl, vol. 29, p. 100889, 2023. https://doi.org/10.1016/j.rsase.2022.100889
K. Aprianto, A. W. Wijayanto, and S. Pramana, “Deep learning approach using satellite imagery data for poverty analysis in Banten, Indonesia,” in 2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom), 2022, pp. 126–131. https://doi.org/10.1109/CyberneticsCom55287.2022.9865480
A. W. Wijayanto, N. Afira, and W. Nurkarim, “Machine learning approaches using satellite data for oil palm area detection in Pekanbaru City, Riau,” in 2022 IEEE international conference on cybernetics and computational intelligence (CyberneticsCom), 2022, pp. 84–89. https://doi.org/10.1109/CyberneticsCom55287.2022.9865301
M. Kadarisman, A. W. Wijayanto, and A. D. Sakti, “Government agencies’ readiness evaluation towards industry 4.0 and society 5.0 in Indonesia,” Soc Sci, vol. 11, no. 8, p. 331, 2022. https://doi.org/10.3390/socsci11080331
L. P. Fávero, P. Belfiore, and R. de F. Souza, "Chapter 15 - Binary and multinomial logistic regression models," in Data Science, Analytics and Machine Learning with R, L. P. Fávero, P. Belfiore, and R. de F. Souza, Eds. Academic Press, 2023, pp. 259–283. https://doi.org/10.1016/B978-0-12-824271-1.00008-1
D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,” PeerJ Comput Sci, vol. 7, p. e623, 2021. https://doi.org/10.7717/peerj-cs.623
Y. Bai, T. Song, Y. Yang, O. Bocheng, and S. Liang, “Construction of carbon trading platform using sovereignty blockchain,” in Proceedings - 2020 International Conference on Computer Engineering and Intelligent Control, ICCEIC 2020, 2020, pp. 149 – 152. https://doi.org/10.1109/ICCEIC51584.2020.00037
M. S. Setiawan and A. W. Wijayanto, “Determinants of immunization status of children under two years old in Sumatera, Indonesia: A multilevel analysis of the 2020 Indonesia National Socio-Economic Survey,” Vaccine, vol. 40, no. 12, pp. 1821–1828, 2022. https://doi.org/10.1016/j.vaccine.2022.02.010
Nandam, V. & Patel, P. L. Comprehensive analysis of data aggregation techniques for flood vulnerability and bivariate flood risk mapping of a coastal urban floodplain. International Journal of Disaster Risk Reduction, 119, 105330, 2025. https://doi.org/10.1016/j.ijdrr.2025.105330
Alyaqout, A. & Anzah, F. Application of bivariate mapping to assess geodiversity and its geomorphic constraints: A case study in Kuwait. International Journal of Geoheritage and Parks, 13 (1), pp. 17-30, 2025. https://doi.org/10.1016/j.ijgeop.2025.01.002
Thakur, D. A. & Mohanty, M. P. A synergistic approach towards understanding flood risks over coastal multi-hazard environments: Appraisal of bivariate flood risk mapping through flood hazard, and socio-economic-cum-physical vulnerability dimensions. Science of The Total Environment, 901, 166423, 2023. https://doi.org/10.1016/j.scitotenv.2023.166423
DOI: http://dx.doi.org/10.30829/zero.v9i1.23939
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Publisher : Department of Mathematics Faculty of Science and Technology Universitas Islam Negeri Sumatera Utara Medan |
✉️ Email: zero_journal@uinsu.ac.id 📱 WhatsApp:085270009767 (Admin Official) |
![]() | ![]() | ![]() | ![]() | ![]() |