ANALYSIS OF THE FACTORS THAT AFFECT THE ORIGINAL REGIONAL INCOME OF THE PROVINCE OF NORTH SUMATERA USING PANEL DATA REGRESSION

Ika Junia Saputri, Sajaratud Dur, Ismail Husein

Abstract


Regional Own Revenue is all revenue from the government at the regional level in a certain period, usually in a period of one fiscal year. There are several factors that can be used to increase Local Own Revenue. The factors used in this study are gross regional domestic product, number of tourists and restaurant taxes. This research was carried out using panel data analysis which is a combination of cross-sectional data (Districts/Cities in North Sumatra) and also time series (Regional Original Income 2015-2020). The best model obtained is the random effect model. From the value of Regional Original Income and these three factors, it was found that the results of Regional Original Revenue in North Sumatra had increased in 2015-2018, but in 2019-2020 Regional Original Revenue in North Sumatra had decreased. The variable that has a positive effect and also has a significant effect on Regional Original Income is the restaurant tax variable. The R2 value of this model is 0.78634, which means that the ability of the Restaurant Tax variable to explain the Regency/City Local Revenue variable in North Sumatra Province is 78.634%, while the remaining 21.366% is explained by other factors not included in the model.

Keywords


Gross Regional Domestic Product, Number of Tourist, Regional Own Revenue, Panel Data, Restaurant Tax

Full Text:

PDF

References


Baltagi, B. H. (2005). Econometrics Analysis of Panel Data (3rd ed.). Chichester, England: John Wiley & Sons Ltd.

Faizah, L.A.& Nurjanah, Dhea Chessy. (2021), Jurnal Ilmiah “Analisis Faktor-faktor yang Mempengaruhi Pendapatan Asli Daerah dengan Menggunakan Regresi Data Panel (Studi Kasus Pendapatan Asli Daerah Kabupaten/Kota di Provinsi DIY Tahun 2014-2019”, Yogyakarta: Universitas Islam Indonesia.

Dewi, Rosita. (2018), Jurnal Ilmiah “Analisis Data Panel untuk Mengetahui Faktor-faktor yang Mempengaruhi Pendapatan Asli Daerah Istimewa Yogyakarta”, Yogyakarta: Universitas Islam Indonesia

Draper, R Norman & Harry Smith. (1998). Applied Regression Analysis. Canada: Wiley

Firdaus, I. M. (2018). Jurnal Ilmiah “Analisis Pengaruh Jumlah Penumpang terhadap Jumlah Bagasi Tahun 2015 dan 2016 dengan Menggunakan Regresi Data Panel Melalui Pendekatan Common Effect Model, Fixed Effect Model, dan Random Effect Model.” Yogyakarta: Universitas Islam Indonesia.

Gujarati, D. N. (2004). Basic Econometrics Fourth Edition. New York: The McGraw-Hill Companies.

Gujarati, D. (2012). Dasar-Dasar Ekonometrika. Jakarta: Salemba Empat.

Jaya, I. G., & Neneng, S. (2009). Kajian Analisis Regresi dengan Data Panel. Seminar Nasional Penelitian, Pendidikan, dan Penerapan MIPA, 51

Indrasetianingsih, Artanti, & Tutik Khalimatul. (2020). Model Regresi Data Panel untuk Mengetahui Faktor yang Mempengaruhi Tingkat Kemiskinan di Pulau Madura. Jurnal Gaussian, Vol 9, 355-363.

Nada, M., & Kariyam. (2019). Analisis Regresi Data Panel terhadap Faktor-faktor yang Mempengaruhi Produksi Ikan Laut. Prosiding Sendika, 157.

Nandita, Dea Aulia. (2019). Regresi Data Panel untuk Mengetahui Faktor-faktor yang Mempengaruhi PDRB di Provinsi DIY Tahun 2011-2015. Indonesian Journal of Applied Statistics, Vol 2, 42-51.

Saragih, J. P. 2018. Disentralisasi Fiskal dan Keuangan Daerah dalam Otonom. Jakarta: Ghalia Indonesia.

Sudiyana, S. (2018). Statistik Keuangan Daerah Provinsi Sumatera Utara 2015-2020. Sumatera Utara: BPS.

Wirawan, N. (2016). Cara Mudah Memahami Statistika Ekonomi dan Bisnis (Statistika Deskriptif). Denpasar: Keraras Emas.

Undang-Undang Pajak Lengkap. Jakarta: Mitra Wacana Media.




DOI: http://dx.doi.org/10.30829/zero.v6i2.15032

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Department of Mathematics
Faculty of Science and Technology
Universitas Islam Negeri Sumatera Utara Medan 

Email: mtk.saintek@uinsu.ac.id