IMPLEMENTATION OF THE GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR) MODEL IN THE CASE OF THE SPREAD OF CORONAVIRUS IN THE DISTRICT CITY OF NORTH SUMATRA

Alfina Febriani Nasution, Riri Syafitri Lubis, Rina Widyasari

Abstract


Corona Virus Disease 2019 (COVID-19) is a new virus that can be transmitted and the worst impact is death. Covid-19 first appeared in Wuhan, China and eventually spread throughout the world, one of which was North Sumatra Province. The spread of Covid-19 cases was quite rapid, until finally the World Health Organization (WHO) declared the Covid-19 case a pandemic. Based on the conditions that occurred, this final project discusses the prediction of positive cases of Covid-19 in five locations in North Sumatra using the Generalized Space Time Autoregressive (GSTAR) model. Considering that Covid-19 spreads very easily, it does not only depend on time but also the proximity between locations, so the GSTAR model is quite good to use in predicting it, assuming the parameters between locations are heterogeneous. The estimation used is OLS with inverse distance weight. This study aims to determine the best GSTAR model and forecast positive cases of Covid-19 at five locations in North Sumatra. The results show that the best GSTAR model in this study is -OLS with an inverse weight of distance with forecasting results for the next 10 days in May 2022.

Keywords


GSTAR; COVID-19; Inverse distance location location weighting matrix; OLS

Full Text:

PDF

References


Arum, C. W., Abdul,. H & Rita. R. (2016). Peramalan Pasang Surut Air Laut Di Pulau Jawa Menggunakan Model Generalized Space Time Autoregressive (GSTAR). Jurnal Gaussian, 5(4), 623-632

Faizah, L.A.& Setiawan. (2013). Pemodelan Inflasi di Kota Semarang, Yogyakarta dan Surakarta dengan Pendekatan GSTAR. Jurnal Sains dan Seni Pomits, 2(2)

Gurajati, D. (2006). Ekonometrika Dasar. Jakarta: Erlangga.

Hardiyanti, S. A., & Shofiyah., Q. (2020). Prediksi Kasus Covid-19 Di Indonesia Menggunakan Metode Adaptive Neuro Fuzzy Inference System (ANFIS). Seminar Nasional Terapan Riset Inovatif (SENTRINOV) Vol. 6, No. 1.

Heizer, Jay & Barry Render. (2015). Manajemen Operasi, Manajemen keberlangsungan dan Rantai Pasokan. Jakarta: Salemba Empat.

Islamiyah, A. N., Rahayu, W., danWiraningsih, E. D. (2018). Penerapan Model Generalized Space Time Autoregressive (GSTAR) Terhadap Penderita TB Paru (BTA+) di DKI Jakarta. Jurnal Statistika Dan Aplikasinya, 2(2), 36 - 48.

Nida, F.A., Sri, S.H.,& Etik. Z. (2020). Penerapan Model Generalized Space Time Autoregressive (GSTAR) Pada Data Nilai Tukar Petani 3 Provinsi di Pulau Sumatera. Jurnal Seminar Nasional Pendidikan Matematika, 1(1), 209-220

Nur, A. I,. Widyanti, R & Eti, D,.W. (2018). Pemodelan Generalized Space Time Autoregressive (GSTAR) dan Penerapannya Pada Penderita TB Paru (BTA+) di DKI Jakarta. Jurnal Statistika dan Aplikasinya, 2(2), 36-48

Nugroho, S., Akbar, S., & Vusvitasari, R. (2015). Kajian Kaitan Koefisien Korelasi Pearson (r), Spearman-Rho (ρ), Kendall-Tau (τ), Gamma (G), Serta Somers (Dyx). Jurnal Gradien Vol. 4 No.2.

Sanusi, W., Maya,. S,. W & Rahmat. S. (2018). Model Space Time Autoregressive (STAR) dan Aplikasinya Terhadap Penyakit Demam Berdarah Dengue di Provinsi Sulawesi Barat. Journal Of Mathematics, 1(2), 115-124

Sarwono. J. (2006). Metode Penelitian Kuantitatif Dan Kualitatif. Yogyakarta: Graha Ilmu

Serly, Novita Laamena. (2017). Pendekatan Model Generalized Space Time Autoregressive (GSTAR) Untuk Pemodelan Data Gempa. Prosiding Seminar Nasional Inovasi Teknologi, 50-60

Setiya, S.N. (2019). Generalized Space-Time Autoregressive (GSTAR) (Studi Kasus Peramalan Harga Saham Syariah Empat Perusahaan di JII). Faktor M Journal, 2(1), 39-50

Suhartono dan Atok, R.M. (2006). Pembobot Lokasi Secara Optimum Dipilih Terhadap model GSTAR. Presented at National Mathematics Conference XIII.Semarang: UniversitasNegeri Semarang.

Wutsqa, D.U, Suhartono & Sujito, B. (2010). Generalized Space Time Autoregressive Modelling. Proceedings Of The 6th IMT-GT Conference on Mathematics, Statistic and Its Apllication (ICMSA2010). Kuala Lumpur Malaysia: Universitas Tuanku Abdul Rahman




DOI: http://dx.doi.org/10.30829/zero.v6i2.14785

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

SLOT GACOR

SLOT GACOR

SLOT GACOR

SLOT GACOR

SLOT GACOR

SLOT GACOR

Department of Mathematics
Faculty of Science and Technology
Universitas Islam Negeri Sumatera Utara Medan 

Email: mtk.saintek@uinsu.ac.id

situs scatter hitam

slot gacor hari ini

Slot Gacor

slot gacor server kamboja

diamond murah

voucher game

slot 4d