Application Of Fp-Growth And Fp-Tree Algorithms To The Treatment Selection Decision System In Beauty Clinics (Chrisa Aesthetic Clinic Case Study)
Abstract
The beauty industry faces challenges in understanding consumer preferences for skincare services. This study develops a decision support system based on data mining using the FP-Growth and FP-Tree algorithms to analyze treatment selection patterns at Christa Aesthetic Clinic. Customer transaction data were analyzed to identify service associations based on skin types. Results show that customers with acne-prone skin tend to choose acne exfoliation, acne skinbooster, and acne facial treatments. Dull skin is commonly treated with brightening peels, dermapen derma glow, and brightening facials. Sensitive skin customers prefer facial detox, DNA salmon skinbooster, and moisturizers, while normal skin types tend to choose light exfoliation, sunscreen, moisturizers, and facials. The FP-Growth algorithm effectively identified frequent treatment combinations with a recommendation accuracy of 87%. A satisfaction survey revealed that 95% of customers were satisfied with recommendations tailored to their skin needs. This system enhances operational efficiency and customer experience while providing a data-driven foundation for clinics to formulate more targeted and personalized service strategies.
Keywords
Full Text:
PDFReferences
Rahmawati, N. W. (2021). Kepercayaan Konsumen Dengan Kepuasan Konsumen Klinik Kecantikan. 9(3), 472–481. https://doi.org/10.30872/psikoborneo
F. Kurnia, S. Monalisa, and I. Fahmi, “Penerapan Algoritma Fp-Growth dalam Menentukan Pola Kecelakaan Lalu Lintas,” Semin.Nas. dan Expo Tek.Elektro 2019,pp.90-96.2017,[online].Available:http://snete.unsyiah.ac.id/2019/wp content/uploads/2019/12/Naskah-16-Irwanto.pdf."
R. Nurul Arifin, “Implementasi Algoritma Frequent Pattern Growth (FP-GROWTH) Menentukan Asosiasi Antar Produk (Study KAsus Nadia Mart),” Dok. Karya Ilm., pp. 0–1, 2015 R. Rachman, “Penentuan Pola Penjualan Media Edukasi dengan Menggunakan Metode Algoritme Apriori dan FP-Growth,” Paradig. - J. Komput. Dan Inform., vol. 23, no. 1, 2021, doi: 10.31294/p.v23i1.9884.
Hamzah, Amir, Dkk. 2020.” Metode Penelitian Kuantitatif Kajian Teoritik & Praktik”. Literasi Nusantara ISBN978-623-6508-29-9 hal : viii + 194
Riadi,M.(2022).‘Sistem Pendukung Keputusan (SPK)’. Available at: https://www.kajianpustaka.com/2022/02/sistem-pendukung keputusanspk.html
Rahmat Fauzi, Dkk. 2023. Implementasi Data Mining Pada Penjualan Pakaian Dengan Algoritma Fp-Growth Jurikom (Jurnal Riset Komputer), Vol. 10 No.2. DOI 10.30865/jurikom.v10i2.5795 Hal 436- 445
Abdullah, Asrul. 2018. “Rekomendasi Paket Produk Guna Meningkatkan Penjualan Dengan Metode FP Growth.” Khazanah Informatika: Jurnal Ilmu Komputer Dan Informatika 4(1):21. doi: 10.23917/khif.v4i1.5794.
Lestari, Yuyun Dwi. 2015. “Penerapan Data Mining Menggunakan Algoritma FP Tree Dan FP Growth Pada Data Transaksi Penjualan Obat Yuyun Dwi Lestari Program Studi Teknik Informatika , Sekolah Tinggi Teknik Harapan Seminar Nasional Teknologi Informasi Dan Komunikasi ( SNASTIKOM 2015 ).” Seminar Nasional Teknologi Informasi Dan Komunikasi (SNASTIKOM 2015) ISBN 976-602-19837-9-9 (Snastikom):60–65.
Jeperson Hutahaean., dkk. Sistem Pendukung Keputusan Yayasan Kita Menulis, 2023 xii; 68 hlm; 16 x 23 cm ISBN: 978-623-342-827-9
Tahir, Muhlis, Dkk. 2021.” Penerapan Algoritma Fp-Growth Dalam Menentukan Kecenderungan Mahasiswa mengambil mata kuliah Pilihan” . Jurnal Ilmiah Nero Vol 6 No.1
DOI: http://dx.doi.org/10.30829/jistech.v10i1.25699
Refbacks
- There are currently no refbacks.
Current Indexing
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.