Pengembangan Model Prediksi Harga Saham Dengan Menggunakan Regresi Linear Berganda Pada Saham BRI

Yuan Anisa, Muhammad Hafiz, Nanda Novita

Abstract


Penelitian ini bertujuan untuk mengembangkan model prediksi harga saham menggunakan regresi linear berganda, dengan studi kasus pada saham PT Bank Rakyat Indonesia (Persero) Tbk. Data yang digunakan berasal dari Yahoo Finance dan PT Stockbit Sekuritas Digital, yang meliputi harga saham historis. Model regresi linear berganda digunakan untuk memprediksi harga saham di masa depan, dengan mengggunakan variabel independen mencakup harga pembukaan, harga tertinggi, harga terendah, dan net buy/sell asing, sedangkan untuk harga penutupan berperan sebagai variabel dependen. Hasil analisis menghasilkan persamaan regresi: Y = 1.725 - 0.529x₁ + 0.689x₂ + 0.840x₃ + 3.221E-8x₄, yang menunjukkan hubungan signifikan antara variabel independen terhadap harga penutupan saham. Penelitian ini memberikan wawasan bagi investor dan pelaku pasar untuk memahami faktor-faktor utama yang memengaruhi pergerakan harga saham, sehingga dapat digunakan sebagai alat bantu dalam pengambilan keputusan investasi. Model yang dihasilkan memiliki potensi untuk dioptimalkan lebih lanjut dengan melibatkan variabel makroekonomi dan teknik machine learning untuk meningkatkan akurasi prediksi.


Keywords


Saham,Pemodelan,Regresi Linear,Prediksi

Full Text:

PDF

References


B. Boris, "Determinants of Alliance Portfolio Complexity and Its Effect on Innovative Performance of Companies," Journal of Product Innovation Management, 2011. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-5885.2011.00824.x.

C. Chu, "Investor mood and financial markets," Journal of Economic Behavior & Organization, 2010. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0167268110001058.

D. Chris, "Linear regression and the normality assumption," Journal of Statistical Planning and Inference, 2018. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0895435617304857.

M. Del and N. N., "Simple linear and multivariate regression models," Journal of Statistical Planning and Inference, 2011. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0301054611001054.

E. Erik, M. Marko, and E. Erik, "Regression analysis," in Springer Handbook of Computational Statistics, Berlin, Germany: Springer, 2019, pp. 345–374. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-662-56707-4_7.

H. Huina and X. Xiaojun, "Twitter mood predicts the stock market," Journal of Computational Science, 2011. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S187775031100007X.

K. Kai, "A blockchain research framework: What we (don’t) know, where we go from here, and how we will get there," Business & Information Systems Engineering, vol. 59, pp. 379–409, 2017. [Online]. Available: https://link.springer.com/article/10.1007/s12599-017-0506-0.

S. Samir and A. Alexander, "Short and long-term forecasting using artificial neural networks for stock prices in Palestine: a comparative study," Electronic Journal of Applied Statistical Analysis, vol. 10, no. 1, pp. 58–76, 2017. [Online]. Available:

http://siba-ese.unisalento.it/index.php/ejasa/article/view/15803.

T. T., F. Felix, and S. Sai, "Scientometric review and analysis of recent approaches to stock market forecasting: Two decades survey," Expert Systems with Applications, vol. 209, p. 117834, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S095741742202317X.

A. Timmermann, "Forecast combinations," Handbook of Economic Forecasting, vol. 1, pp. 135–196, 2006. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1574070605010049.

M. Walid and F. Halimiyah, "Klasifikasi Kemandirian Siswa SMA/MA Double Track Menggunakan Metode Naive Bayes," Jurnal ICT: Information and Communication Technology, vol. 22, pp. 190–197, 2022.




DOI: http://dx.doi.org/10.30829/jistech.v9i2.22213

Refbacks

  • There are currently no refbacks.



Current Indexing :

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.