Autoregressive integrated moving average (ARIMA) implementation in number of visitors forecasting at the Balai Layanan Perpustakaan DPAD DIY

Ndaru Ramadhan, Selvi Centia, Jovanscha Qisty Adinda Fildzah Arifianto, Nurul Asiah

Abstract


Government organizations must provide excellent services to their citizens. The Balai Layanan Perpustakaan DPAD DIY, one of the government organizations for library affairs, must also provide the best library services. One way is to forecast the number of visitors to prepare better services for the future. This research aims to predict the number of visitors in 2024. This research used historical data in the form of the number of visitors at the Balai Layanan Perpustakaan DPAD DIY in 2023. This data was analyzed using the ARIMA Model (2,0,6) with the results that this model had a MAPE value of 25.35%, so it was accurate enough to be used in forecasting. Based on forecasting results, it is known that the total number of visitors to the Balai Layanan Perpustakaan DPAD DIY in 2024 will be 115,213. The fewest visitors were in January 2024, as many as 5,198 visitors, while the most were in June 2024, as many as 13,605 visitors.


Keywords


ARIMA model; Forecasting; Number of visitors

Full Text:

PDF

References


Arya, P.R., Indwiarti, & Atiqi, R.A. (2019). Implementasi genetic algorithm dalam model arima untuk memprediksi observasi time series. Ind. Journal on Computing, 4(3), 37–50. https://doi.org/10.21108/indojc.2019.4.3.353

Aziz, S., & Sayuti, A. (2023). Penerapan metode arima untuk peramalan pengunjung perpustakaan uin suska riau. Seminar Nasional Teknologi Informasi, Komunikasi Dan Industri (SNTIKI), 2(1), 2579–5406. https://journal.itk.ac.id/index.php/semiotika/article/view/1003

Bai, L., Lu, K., Dong, Y., Wang, X., Gong, Y., Xia, Y., Wang, X., Chen, L., Yan, S., Tang, Z., & Li, C. (2023). Predicting monthly hospital outpatient visits based on meteorological environmental factors using the arima model. Scientific Reports, 13(1), 1–11. https://doi.org/10.1038/s41598-023-29897-y

Buchori, M., & Sukmono, T. (2018). Peramalan produksi menggunakan metode autoregressive integrated moving average (arima) di pt.xyz. PROZIMA (Productivity, Optimization and Manufacturing System Engineering), 2(1), 27–33. https://doi.org/10.21070/prozima.v2i1.1290

DIY, B.L.P.D. (2024). Survei ikm balai layanan perpustakaan grhatama pustaka 2019-2024. Yogyakarta: Balai Layanan Perpustakaan DPAD DIY.

Endarti, S. (2022). Perpustakaan sebagai tempat rekreasi informasi. Abdi Psutaka: Jurnal Perpustakaan Dan Kearsipan, 2(1), 23–28. https://doi.org/10.24821/jap.v2i1.6990

Evalina. (2018). Kualitas pelayanan perpustakaan perguruan tinggi. Jurnal Imam Bonjol: Kajian Ilmu Informasi Dan Perpustakaan, 21(1), 19–30. https://doi.org/10.15548/jib.v2i1.26

Fahmuddin, M., Ruliana, & Mustika, S. S. (2023). Perbandingan metode ARIMA dan single exponential smoothing dalam peramalan nilai ekspor kakao Indonesia. Variansi: Journal of Statistics and Its Application on Teaching and Research, 5(3), 163–176. https://doi.org/10.35580/variansiunm193

Fathmi. (2017). Kualitas layanan perpustakaan dan informasi perpustakaan nasional ri. Visi Pustaka, 19(2), 140–152. https://ejournal.perpusnas.go.id/vp/article/view/57/54

Frasandy, R. N., Suryati, E., & Yuliantika, S. (2022). Efektifitas media smart card (kartu pintar) dalam meningkatkan hasil belajar pembelajaran tematik. Dawuh Guru: Jurnal Pendidikan MI/SD, 2(2), 161–170. https://doi.org/10.35878/guru/v2.i2.466

Haryanto, Laugu, N., & Zulaikha, S. R. (2024). Public libraries as incubators for social inclusion and entrepreneurship for achieving sustainable development goals (sdgs) : a progressive transformation. Jurnal Kependidikan: Jurnal Hasil Penelitian Dan Kajian Kepustakaan Di Bidang Pendidikan, Pengajaran Dan Pembelajaran, 10(2), 760–770. https://doi.org/10.33394/jk.v10i2.11648

Huang, Y., Xu, C., Ji, M., Xiang, W., & He, D. (2020). Medical service demand forecasting using a hybrid model based on arima and self-adaptive filtering method. BMC Medical Informatics and Decision Making, 20(1), 1–14. https://doi.org/10.1186/s12911-020-01256-1

Jamila, A.U., Siregar, B.M., & Yunis, R. (2021). Analisis runtun waktu untuk memprediksi jumlah mahasiswa Baru dengan model random forest. Paradigma - Jurnal Komputer Dan Informatika, 23(1), 85–92. https://doi.org/10.31294/p.v23i1.9781

Juang, W.-C., Huang, S.-J., Huang, F.-D., Cheng, P.-W., & Wann, S.-R. (2017). Application of time series analysis in modelling and forecasting emergency department visits in a medical centre in southern taiwan. bmj open, 7(11), 1–7. https://doi.org/10.1136/bmjopen-2017-018628

Kamil, M.F.I., Prijana, & Kurniasih, N. (2024). Hubungan kualitas layanan dengan minat kunjung pemustaka di perpustakaan kota bandung. Literatify : Trends in Library Developments, 5(2), 241–250. https://doi.org/10.24252/literatify.v5i2.48710

Khatibi, A., da Silva, A.P.C., Almeida, J.M., & Gonçalves, M.A. (2022). A quantitative analysis of the impact of explicit incorporation of recency, seasonality and model specialization into fine-grained tourism demand prediction models. In PLoS ONE (Vol. 17, Issue 12 December). https://doi.org/10.1371/journal.pone.0278112

Muhammad, M., Harjono, H., & Akhsani, L. (2017). Peramalan mahasiswa baru ft dan fkip um purwokerto dengan model arima. Techno (Jurnal Fakultas Teknik, Universitas Muhammadiyah Purwokerto), 18(2), 123. https://doi.org/10.30595/techno.v18i2.2013

Muliana, H., Fathoni, T., & Suhardini, D. (2016). Hubungan antara kualitas layanan perpustakaan masjid dengan tingkat kepuasan pemustaka pada perpustakaan masjid pusat dakwah islam (pusdai) bandung. EDULIBINFO: Journal of Library and Information Science, 3(1), 21–29. https://ejournal.upi.edu/index.php/edulibinfo/article/view/9036

Novianti, H.T., Mindarti, L. indah, & Hermintatik. (2007). Pengaruh kualitas pelayanan terhadap kepuasan pemustaka (studi pada perpustakaan umum dan arsip kota malang ). Jurnal Administrasi Publik (JAP), 3(5), 789–794. https://administrasipublik.studentjournal.ub.ac.id/index.php/jap/article/view/866

Petrevska, B. (2017). Predicting Tourism Demand by A.R.I.M.A. Models. Economic research-ekonomska istraživanja, 30(1), 939–950. https://doi.org/10.1080/1331677X.2017.1314822

Rafikasari, E.F., & Rohman, K. (2018). Analisis deskriptif pengunjung perpustakaan iain tulungagung. Dinamika Penelitian: Media Komunikasi Sosial Keagamaan, 18(1), 105–122. https://doi.org/10.21274/dinamika.2018.18.1.105-122

Rahayu, I.D., & Christiani, L. (2019). Pengaruh program jam layanan perpustakaan terhadap minat kunjung taruna di politeknik ilmu pelayaran semarang. Jurnal Ilmu Perpustakaan, 6(3), 631–640. https://ejournal3.undip.ac.id/index.php/jip/article/view/23195

Rahayuningsih, F. (2016). Menuju layanan prima perpustakaan berbasis teknologi informasi. Info Persadha, 14(1), 14–20. https://e-journal.usd.ac.id/index.php/Info_Persadha/article/view/114

Ramadhan, N., Azzahra, I., & Ramadhani, W. (2024). Forecasting kandaga library visitors using au- aoregressive integrated moving average (arima) model. Buletin Perpustakaan, 7(2), 227–251. https://doi.org/10.20885/bpuii.v7i2.36920

Risparyanto, A. (2022). Pengaruh kualitas layanan perpustakaan dan aktivitas kegiatan pustakawan terhadap kepuasan pengguna perpustakaan di era 4 . 0. UNILIB: Jurnal Perpustakaan, 13(2), 89–100. https://doi.org/10.20885/unilib.Vol13.iss2.art4

Sagala, J.P., & Tarigan, E.D. (2023). Analisis peramalan harga emas antam menggunakan arima. SEMOTIKA: Seminar Nasional Teknologi Informasi Dan Matematika, 2(1), 77–84. https://journal.itk.ac.id/index.php/semiotika/article/view/1003

Sari, N., Nasution, J., Fisholiha, S., Situmorang, B.U.K, & Lubis, S.H. (2022). Analisis kualitas pelayanan terhadap pengunjung perpustakaan daerah sumatera utara. SIBATIK JOURNAL: Jurnal Ilmiah Bidang Sosial, Ekonomi, Budaya, Teknologi, Dan Pendidikan, 1(12), 2939–2946. https://doi.org/10.54443/sibatik.v1i12.479

Shafack, R.M. (2016). The library and information science ( lis ) profession and the cameroon development vision 2035 : a perception study. Journal of Sustainable Development, 9(4), 225–233. https://doi.org/10.5539/jsd.v9n4p225

Sinaga, S.A. (2023). Implementasi metode arima (autoregressive moving average) untuk prediksi penjualan mobil. Journal Global Technology Computer, 2(3), 102–109. https://doi.org/10.47065/jogtc.v2i3.4013

Suhernik, & Cahyani, I.R. (2020). Upaya perpustakaan universitas airlangga dalam mewujudkan airlangga university library sustainable development goals (sdgs). Jurnal Perpustakaan Universitas Airlangga, 10(2), 83–93. https://doi.org/10.20473/jpua.v10i2.2020.83-93

Sumiati, E. (2019). Minat dan kualitas pelayanan terhadap tingkat kunjungan ke perpustakaan. Coopetition : Jurnal Ilmiah Manajemen, 10(2), 111–120. https://doi.org/10.32670/coopetition.v10i2.45

Wijayanti, R.Y. (2017). Pengembangan perpustakaan wujudkan peradaban bangsa yang maju dan bermartabat. Libraria, 5(2), 321–340. https://journal.iainkudus.ac.id/index.php/Libraria/article/view/2655/pdf

Wulandari R.A, & Gernowo R. (2019). Metode autoregressive integrated moving average (arima) dan metode adaptive neuro fuzzy inference system (anfis) dalam analisis curah hujan. Berkala Fisika, 22(1), 41–48. https://ejournal.undip.ac.id/index.php/berkala_fisika/article/view/23483

Wulandari, S.S., Sufri, & Yurinanda, S. (2021). Penerapan metode arima dalam memprediksi fluktuasi harga saham pt bank central asia tbk. BUANA Matematika: Jurnal Ilmiah Matematika Dan Pendidikan Matematika, 11(1), 53–68. https://doi.org/10.36456/buanamatematika.v11i1.3560

Yang, R., Liu, K., Su, C., Takeda, S., Zhang, J., & Liu, S. (2023). Quantitative analysis of seasonality and the impact of covid-19 on tourists’ use of urban green space in okinawa: an arima modeling approach using web review data. Land, 12(5), 1–25. https://doi.org/10.3390/land12051075

Yulistia, A., & Fryonanda, H. (2021). Peramalan jumlah pengunjung restaurant menggunakan metode autoregressive integrated moving average (arima) (studi kasus: restoran jakarta selatan). JIK: Jurnal Ilmu Komputer, 6(1), 1–8. https://doi.org/10.47007/komp.v6i01.6359

Zahara, Z., Fairus, F., & Muliani, F. (2023). Aplikasi metode arima dan metode des dalam meramalkan jumlah kunjungan pasien rawat jalan poli umum. AXIOM : Jurnal Pendidikan Dan Matematika, 12(2), 139. https://doi.org/10.30821/axiom.v12i2.15118

Zhang, X., Yu, Y., Xiong, F., & Luo, L. (2020). Prediction of daily blood sampling room visits based on arima and ses model. Computational and Mathematical Methods in Medicine, 2020(1), 1–11. https://doi.org/10.1155/2020/1720134

Zulhamidi, & Hardianto, R. (2017). Peramalan penjualan teh hijau dengan metode arima (studi kasus pada pt.mk). Jurnal PASTI, 11(3), 231–244. https://publikasi.mercubuana.ac.id/index.php/pasti/article/view/2752




DOI: http://dx.doi.org/10.30821/axiom.v14i1.21935

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

p-ISSN: 2087-8249 | e-ISSN: 2580-0450

 Indexed by:

          

 

 

 

 

 Creative Commons License

AXIOM : Jurnal Pendidikan dan Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.