Sentiment Analysis of Indonesia’s Free Nutritious Meal Program on Platform X (Formerly Twitter) Using IndoBERT

Adiba Zahriyah Muhabbab, Bunyamin Bunyamin, Hasmawati Hasmawati

Abstract


Public sentiment toward government programs is increasingly expressed through social media, necessitating robust quantitative evaluation methods. This study examines public sentiment toward Indonesia’s Free Nutritious Meal (Makan Bergizi Gratis/MBG) program using 7,958 manually annotated Indonesian-language posts from platform X (January–August 2025), consisting of 3,752 positive, 848 negative, and 3,358 neutral tweets. Sentiment classification was conducted using IndoBERT-base-P2 and compared with a Support Vector Machine (SVM) baseline with TF-IDF features, employing class-weighted learning to address data imbalance. Model performance was evaluated using accuracy and macro F1-score, followed by paired-sample statistical testing. IndoBERT-base-P2 achieved 92% accuracy and a macro F1-score of 0.90, outperforming SVM (86% accuracy, macro F1 = 0.83). Paired t-test results indicate that this improvement is statistically significant (p < 0.05), confirming the robustness of transformer-based modeling. This study contributes methodologically by integrating contextual language modeling, imbalance-aware optimization, and inferential statistical validation within a unified sentiment analysis framework, demonstrating the quantitative advantage of transformer-based approaches for Indonesian social media policy analysis.


Keywords


Sentiment Analysis; IndoBERT; MBG; X

Full Text:

PDF

References


N. Alamsyah, E. Noersasongko, G. F. Shidik, and N. Rijati, “Fine-Grained Sentiment Classification of Public Opinion on Electric Cars in Indonesia Using IndoBERT,” in Proceedings - 2024 International of Seminar on Application for Technology of Information and Communication: Smart And Emerging Technology for a Better Life, iSemantic 2024, 2024, pp. 502–508. doi: 10.1109/iSemantic63362.2024.10762277.

H. R. P. Sianturi, “Politics on a plate: equivocal communication in Indonesian presidential nutrition policy,” Front. Commun., vol. 10, 2025, doi: 10.3389/fcomm.2025.1612652.

R. I. Soma, A. Azhar, and T. Uchiyama, “Food preferences in Indonesian schoolchildren and the parents’ perspectives on the upcoming nutritious free meal program,” in E3S Web of Conferences, 2024, vol. 577. doi: 10.1051/e3sconf/202457702004.

M. R. Afif, D. Pramesti, and H. Fakhrurroja, “Analyzing Sentiment Correlation Between Social and Mass Media on Jakarta Air Quality in 2024 Using IndoBERT,” in 2025 International Conference on Data Science and Its Applications, ICoDSA 2025, 2025, pp. 1015–1020. doi: 10.1109/ICoDSA67155.2025.11157180.

F. P. Julian and A. K. Pranata, “The Sustainability Principles in the Nutritious Meal Program: A Study of Environmental Law and Popular Economy Aspects,” in IOP Conference Series: Earth and Environmental Science, 2025, vol. 1537, no. 1. doi: 10.1088/1755-1315/1537/1/012024.

A. A. Saleh, S. Abdullah, R. Muhammad, and M. Y. Amir, “Rethinking School Nutrition via Community Engagement: A Review with Implications for Indonesia’s MBG Program,” Media Kesehat. Masy. Indones., vol. 21, no. 3, pp. 259–273, 2025, doi: 10.30597/mkmi.v21i3.46204.

M. T. Uliniansyah, A. Jarin, and A. Santosa, “Modeling sentiment analysis of Indonesian biodiversity policy Tweets using IndoBERTweet,” IAES Int. J. Artif. Intell., vol. 14, no. 3, pp. 2389–2401, 2025, doi: 10.11591/ijai.v14.i3.pp2389-2401.

D. Febryanti, “Customer Sentiment Analysis of Local Skincare Reviews Using IndoBERT and Graph Neural Networks,” in 2024 International Conference on Intelligent Cybernetics Technology and Applications, ICICyTA 2024, 2024, pp. 320–325. doi: 10.1109/ICICYTA64807.2024.10912986.

Y. O. Sihombing, R. Fuad Rachmadi, S. Sumpeno, and M. J. Mubarok, “Optimizing IndoRoBERTa Model for Multi-Class Classification of Sentiment & Emotion on Indonesian Twitter,” in Proceeding - IEEE 10th Information Technology International Seminar, ITIS 2024, 2024, pp. 12–17. doi: 10.1109/ITIS64716.2024.10845566.

A. W. Nguyen, L. M. Chatters, R. J. Taylor, and D. M. Mouzon, “Social Support from Family and Friends and Subjective Well-Being of Older African Americans,” J. Happiness Stud., vol. 17, no. 3, pp. 959–979, 2016, doi: 10.1007/s10902-015-9626-8.

I. L. Pramesthi et al., “Evaluating the Impact of Indonesia’s National School Feeding Program (ProGAS) on Children’s Nutrition and Learning Environment: A Mixed-Methods Approach,” Nutr. , vol. 17, no. 22, 2025, doi: 10.3390/nu17223575.

E. Kouloumpis, T. Wilson, and J. Moore, “Twitter Sentiment Analysis: The Good the Bad and the OMG!,” in Proceedings of the 5th International AAAI Conference on Weblogs and Social Media, ICWSM 2011, 2011, pp. 538–541. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128719106&partnerID=40&md5=ff1e9bb8d96b59ffbe507fe1fcb3a000

N. C. Dang, M. N. Moreno-García, and F. De la Prieta, “Sentiment analysis based on deep learning: A comparative study,” Electron., vol. 9, no. 3, 2020, doi: 10.3390/electronics9030483.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language understanding,” in NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference, 2019, vol. 1, pp. 4171–4186. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083815650&partnerID=40&md5=4986c6d6076c0c91df84d17216b47216

K. L. Tan, C. P. Lee, K. S. M. Anbananthen, and K. M. Lim, “RoBERTa-LSTM: A Hybrid Model for Sentiment Analysis With Transformer and Recurrent Neural Network,” IEEE Access, vol. 10, pp. 21517–21525, 2022, doi: 10.1109/ACCESS.2022.3152828.

I. Wayan Agus Surya Darma, P. R. Mahendra Putra, P. Sugiartawan, V. Waas, and N. P. Sutramiani, “A Fine-tuned BERT-based Approach for Sentiment Analysis of Indonesian Public Towards ChatGPT,” in Proceedings - International Conference on Smart-Green Technology in Electrical and Information Systems, ICSGTEIS, 2023, pp. 88–93. doi: 10.1109/ICSGTEIS60500.2023.10424123.

M. G. K. Lita, A. D. Mardhiyyah, I. G. A. N. S. Maharani, A. P. Mulia, and F. I. Maulana, “Sentiment Analysis of Tokopedia Product Reviews Using Naïve Bayes Algorithm,” in Communications in Computer and Information Science, 2025, vol. 2185 CCIS, pp. 179–189. doi: 10.1007/978-3-031-71484-9_16.

D. Pratama and S. Akbar, “Analysis of Public Opinion on Public Transportation in Bandung and Jakarta in Twitter using Indonesian Bidirectional Encoder Representations from Transformer,” in Proceedings of the 2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology, IAICT 2023, 2023, pp. 179–183. doi: 10.1109/IAICT59002.2023.10205608.

R. Rahutomo and B. Pardamean, “Finetunning IndoBERT to Understand Indonesian Stock Trader Slang Language,” in Proceedings of 2021 1st International Conference on Computer Science and Artificial Intelligence, ICCSAI 2021, 2021, pp. 42–46. doi: 10.1109/ICCSAI53272.2021.9609746.

H. Atsqalani, N. Hayatin, and C. S. K. Aditya, “Sentiment Analysis from Indonesian Twitter Data Using Support Vector Machine And Query Expansion Ranking,” J. Online Inform., vol. 7, no. 1, pp. 116–122, 2022, doi: 10.15575/join.v7i1.669.

A. P. A. Atmojo, N. A. Arienaldi, I. S. Edbert, and A. Aulia, “Sentiment Analysis of Quick Count Results of the 2024 Indonesian Presidential Election on Social Media,” in International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 2024, pp. 710–715. doi: 10.1109/EECSI63442.2024.10776216.

A. Sulaiman, T. B. Kurniawan, D. A. Dewi, and M. Alqudah, “Utilizing Sentiment Analysis for Reflect and Improve Education in Indonesia,” J. Appl. Data Sci., vol. 6, no. 1, pp. 189–200, 2025, doi: 10.47738/jads.v6i1.527.

C. Thawley, M. Crystallin, and K. Verico, “Towards a Higher Growth Path for Indonesia,” Bull. Indones. Econ. Stud., vol. 60, no. 3, pp. 247–282, 2024, doi: 10.1080/00074918.2024.2432035.

M. Wongkar and A. Angdresey, “Sentiment Analysis Using Naive Bayes Algorithm Of The Data Crawler: Twitter,” in Proceedings of 2019 4th International Conference on Informatics and Computing, ICIC 2019, 2019. doi: 10.1109/ICIC47613.2019.8985884.

T. Wang, K. Lu, K. P. Chow, and Q. Zhu, “COVID-19 Sensing: Negative Sentiment Analysis on Social Media in China via BERT Model,” IEEE Access, vol. 8, pp. 138162–138169, 2020, doi: 10.1109/ACCESS.2020.3012595.

A. A. Alalwan, N. P. Rana, Y. K. Dwivedi, and R. Algharabat, “Social media in marketing: A review and analysis of the existing literature,” Telemat. Informatics, vol. 34, no. 7, pp. 1177–1190, 2017, doi: 10.1016/j.tele.2017.05.008.

D. D. Soekarjo, A. Roshita, A.-M. Thow, M. Li, and J. H. Rah, “Strengthening Nutrition-Specific Policies for Adolescents in Indonesia: A Qualitative Policy Analysis,” Food Nutr. Bull., vol. 39, no. 3, pp. 475–486, 2018, doi: 10.1177/0379572118785054.

A. S. Girsang, “Sentiment Analysis of COVID-19 Public Activity Restriction (PPKM) Impact using BERT Method,” Int. J. Eng. Trends Technol., vol. 70, no. 12, pp. 281–288, 2022, doi: 10.14445/22315381/IJETT-V70I12P226.

R. N. Tanaja, A. Widjaya, A. A. S. Gunawan, and K. E. Setiawan, “Evaluating Public Opinion on the 2024 Indonesian Presidential Election Candidate: An IndoBERT Approach to Twitter Sentiment Analysis,” in 2024 10th International Conference on Smart Computing and Communication, ICSCC 2024, 2024, pp. 88–94. doi: 10.1109/ICSCC62041.2024.10690796.

K. Kircaburun and M. D. Griffiths, “Instagram addiction and the Big Five of personality: The mediating role of self-liking,” Journal of Behavioral Addictions, vol. 7, no. 1. akjournals.com, pp. 158–170, 2018. doi: 10.1556/2006.7.2018.15.

F. Koto, A. Rahimi, J. H. Lau, and T. Baldwin, “IndoLEM and IndoBERT: A Benchmark Dataset and Pre-trained Language Model for Indonesian NLP,” in COLING 2020 - 28th International Conference on Computational Linguistics, Proceedings of the Conference, 2020, pp. 757–770. doi: 10.18653/v1/2020.coling-main.66.

E. Erhamwilda, N. Afrianti, A. Hakim, D. Dillon, and J. Julia, “The effect of healthy food promotion through lunch boxes on the knowledge, attitudes and habits of elementary school students,” Humanit. Soc. Sci. Lett., vol. 12, no. 3, pp. 575–593, 2024, doi: 10.18488/73.v12i3.3811.

K. Rand et al., “‘It is not the diet; it is the mental part we need help with.’ A multilevel analysis of psychological, emotional, and social well-being in obesity,” Int. J. Qual. Stud. Health Well-being, vol. 12, no. 1, 2017, doi: 10.1080/17482631.2017.1306421.




DOI: http://dx.doi.org/10.30829/zero.v9i3.27629

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Publisher :
Department of Mathematics
Faculty of Science and Technology
Universitas Islam Negeri Sumatera Utara Medan
📱 WhatsApp:085270009767 (Admin Official)
SINTA 2 Google Scholar CrossRef Garuda DOAJ