Spatial Grouping of Tornado-Relevant Wind Regimes Areas in Indonesia to Enhance Disaster Risk Mitigation Capacity

Sela Naren Ardelita, A'yunin Sofro

Abstract


Tornadoes are major weather hazards in Indonesia, where wind variability is important for assessing disaster risk and supporting energy planning. This study conducts a short-term (one-year) analysis by identify similarities in regional wind speed patterns using a time-series clustering approach, treating monthly average wind speeds in 2024 as proxies for tornado-relevant wind regimes rather than direct tornado occurrence data. Agglomerative hierarchical clustering is integrated with three distance measures—Dynamic Time Warping (DTW), Autocorrelation Function (ACF), and Short Time Series (STS)—and optimized using Brain Storm Optimization (BSO) to determine optimal distance weighting and cluster numbers. The results indicate that DTW provides the best performance, yielding a two-cluster solution with a Silhouette Coefficient of 0.5292. The first cluster exhibits relatively stable wind patterns, while the second shows higher temporal variability. This framework provides a data-driven basis for region-specific wind energy planning and tornado-adaptive infrastructure considerations in Indonesia.


Keywords


Average Linkage; Brain Storm; Clustering; Tornadoes.

Full Text:

PDF

References


Siswanto, & Supari. “Identifying Precursor Condition for Puting Beliung Event in Pangkalpinang.” Widyariset, 15(3), 599–610, 2012. [Online]. Available: http://dx.doi.org/10.14203/widyariset.1 5.3.2012.599-610

V. A. Johnson, K. E. Klockow-McClain, R. A. Peppler, and A. M. Person, “Tornado climatology and risk perception in central Oklahoma,” Weather, Climate, and Society, vol. 13, pp. 743–751, 2021. [Online]. Available: 10.1175/WCAS-D-20-0137.1.

“European Severe Weather Database, or ESWD”, Dotzek et al., 2009. Accessed: Dec, 16, 2025. [Online]. Available: https://eswd. eu/

“National Centers for Environmental Information,” NCEI. Accessed: Dec, 16, 2025. [Online]. Available: http://www.ncdc. noaa.gov/

“Northern Tornadoes Project,” NTP. Accessed: Dec, 16, 2025. [Online]. Available: https://uwo.ca/ntp/

“Japan Meteorological Agency,” JMA. Accessed: Dec, 16, 2025. [Online]. Available: https://www.data. jma.go.jp/stats/data/bosai/tornado/list. html

B. Antonescu, D. M. Schultz, F. Lomas, and T. Kühne, “Tornadoes in Europe: Synthesis of the observational datasets,” Monthly Weather Review, vol. 144, pp. 2445–2480, 2016. [Online]. Available: 10.1175/MWR-D-15-0298.1.

A. Chernokulsky, M. Kurgansky, I. Mokhov, A. Shikhov, I. Azhigov, E. Selezneva, D. Zakharchenko, B. Antonescu, and T. Kühne, “Tornadoes in Northern Eurasia: From the Middle Age to the Information Era,” Monthly Weather Review, vol. 148, pp. 3081–3110, 2020. [Online]. Available: 10.1175/MWR-D-19-0251.1.

D. Veloso-Aguila, K. L. Rasmussen, and E. D. Maloney, “Tornadoes in Southeast South America: Mesoscale to Planetary-Scale Environments,” Monthly Weather Review, vol. 152, pp. 295–318, 2024. [Online]. Available: 10.1175/MWR-D-22-0248.1.

R. Kounkou, G. Mills, and B. Timbal, “A reanalysis climatology of cool-season tornado environments over southern Australia,” International Journal of Climatology, vol. 29, pp. 2079–2090, 2009. [Online]. Available: 10.1002/joc.1856.

H. Niino, T. Fujitani, and N. Watanabe, “A statistical study of tornadoes and waterspouts in Japan from 1961 to 1993,” Journal of Climate, vol. 10, pp. 1730–1752, 1997. [Online]. Available: 10.1175/1520-0442(1997)010<1730:ASSOTA>2.0.CO;2.

S. Kawazoe, M. Inatsu, M. Fujita, S. Sugimoto, Y. Okada, and S. Watanabe, “Evaluation of tornadic environments and their trends and projected changes in Japan,” npj Climate and Atmospheric Science, vol. 6, 2023. [Online]. Available: 10.1038/s41612-023-00524-x.

J. Chen, X. Cai, H. Wang, L. Kang, H. Zhang, Y. Song, H. Zhu, W. Zheng, and F. Li, “Tornado climatology of China,” International Journal of Climatology, vol. 38, pp. 2478–2489, 2018. [Online]. Available: 10.1002/joc.5369.

C. Zhang, M. Xue, K. Zhu, and X. Yu, “Climatology of significant tornadoes within China and comparison of tornado environments between the United States and China,” Monthly Weather Review, vol. 151, pp. 465–484, 2023. [Online]. Available: 10.1175/MWR-D-22-0070.1.

S. Bhan, S. Paul, K. Chakravarthy, R. Saxena, K. Ray, and N. Gopal, “Climatology of tornadoes over northwest India and Pakistan; and meteorological analysis of recent tornadoes over the region,” Journal of Indian Geophysical Union, vol. 20, pp. 75–88, 2016.

G. Capuli, “Project Severe Weather Archive of the Philippines (SWAP) Part 1: Establishing a baseline climatology for severe weather across the Philippine archipelago,” Annals of Geophysics, vol. 67, Art. no. GC553, 2024. [Online]. Available: 10.4401/ag-9151.

American Meteorological Society, “Tornado,” 2024. [Online]. Available: https://glossary.ametsoc.org/wiki/Tornado.

J. Rauhala, H. E. Brooks, and D. M. Schultz, “Tornado climatology of Finland,” Monthly Weather Review, vol. 140, pp. 1446–1456, 2012. . [Online]. Available: 10.1175/MWR-D-11-00196.1.

Soemantri, H. “Strategi Pengarasutamaan Pengurangan Resiko Bencana Di Sekolah”. Jakarta, 2012.

Supriyono, P. “Seri Pendidikan Pengurangan Risiko Bencana Angin Puting Beliung”. Yogyakarta: Andi, 2015.

International Energy Agency (IEA). “Technology Roadmap: Wind Energy -2013 edition”.IEA, 2013, 2001.

Burton, T., Nick J., David S., and Ervin B. “Wind Energy Handbook, 2nd Edition”. John Wiley & Sons, Ltd., West Sussex, U.K, 2001.

I. Ayundari & Sutikno, “Penentuan Zona Musim di Mojokerto Menurut Karakteristik Curah Hujan Dengan Metode Time Series Based Clustering,” INFERENSI, vol. 2, no. 2, pp. 63–70, 2019.

T. W. Liao, “Clustering of time series data—a survey,” Pattern Recognit, vol. 38, no. 11, pp. 1857–1874, 2005.

G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, “Time Series Analysis : Forecasting and Control Fourth Edition”. New Jersey : John Wiley and Sons Inc., 2008. [Online]. Available: 10.1142/9789813148963_0009.

A. Sardá-Espinosa, “Time-series clustering in R Using the dtwclust package,” R Journal, vol. 11, no. 1, pp. 1–45, 2019, doi: 10.32614/rj-2019-023.

H. Li, J. Liu, Z. Yang, R. W. Liu, K. Wu, and Y. Wan, “Adaptively constrained dynamic time warping for time series classification and clustering,” Inf Sci (N Y), vol. 534, pp. 97–116, 2020.

M. A. A. Riyadi, D. S. Pratiwi, A. R. Irawan, and K. Fithriasari, “Clustering stationary and non-stationary time series based on autocorrelation distance of hierarchical and k-means algorithms,” International Journal of Advances in Intelligent Informatics, vol. 3, no. 3, pp. 154–160, 2017.

T. S. Madhulata, “An Overview of Clustering Methods,” IOSR Journal of Engineering, vol. 2, no. 4, pp. 719–725, 2012, doi: 10.3233/ida-2007-11602.

S. A. Nurfatimah, S. Hasna, dan D. Rostika, “Membangun Kualitas Pendidikan di Indonesia dalam Mewujudkan Program Sustainable Development Goals (SDGs)”, Jurnal Basicedu, vol. 6, no. 4, pp. 6145–6154, 2022, [Online]. Available: 10.31004/basicedu.v6i4.3183

Alwi, Wahidah, & Muh. Hasrul., “Analisis Klaster untuk Pengelompokan Kabupaten/Kota di Propinsi Sulawesi Selatan Berdasarkan Indikator Kesejahteraan Masyarakat”. Jurnal MSA,Vol.6, No. 1, pp. 35-42, 2018.

Ningsih, Silvia., Sri Wahyuningsih, & Yuki Novia Nasution., “Perbandingan Kinerja Metode Complete Linkage dan Average Linkage dalam Menentukan Analisis Cluster (Studi Kasus : Produksi Palawiya Provinsi Kalimantan Timur 2014/2015)”. Prosiding Seminar Sains dan Teknologi UNMUL, Vol. 1 thn 2016, 46-50: Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Mulawarman, Samarinda, 2016.

R. A. Johnson and D. W. Wichern, “Applied Multivariate Statistical Analysis”. Pearson Education, Inc., 2007.

R. M. Shukla and S. Sengupta, “Scalable and robust outlier detector using hierarchical clustering and long short-term memory (lstm) neural network for the internet of things,” Internet of Things, vol. 9, p. 100167, 2020.

Y. Shi, "An Optimization Algorithm Based on Brainstorming Process," in *Emerging Research on Swarm Intelligence and Algorithm Optimization*, Y. Shi, Ed. Hershey, PA, USA: IGI Global Scientific Publishing, pp. 1–35, 2015. [Online]. Available: https://doi.org/10.4018/978-1-4666-6328-2.ch001

Sanger, R. J., Fibriani, C., & Nataliani, Y., “Perancangan Aplikasi Sistem Informasi Pemantauan Kecepatan Angin Beserta Pengkategorian Jenis Angin dengan Hardware Inframerah Sebagai Media Kalibrasi”, Jurnal Teknologi Informasi – Aiti, vol. 9, pp. 101–200, 2012. [Online]. Available: https://api.semanticscholar.org/CorpusID:116621043.

Azhar, A., & Hashim, H., “A Review of Wind Clustering Methods Based on the Wind Speed and Trend in Malaysia,” Energies, 16(8), 1–24, 2023. [Online]. Available: https://doi.org/10.3390/en16083388

P. J. M. Ali & R. H. Faraj, “Data Normalization and Standardization: A Technical Report,” Machine Learning Technical Reports, vol. 1, no. 1, pp. 1–6, 2014. [Online]. Available: doi:10.13140/RG.2.2.28948.04489

C. S. Möller-Levet, F. Klawonn, K. H. Cho, and O. Wolkenhauer, “Fuzzy clustering of short time-series and unevenly distributed sampling points,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 2810, no. 0, pp. 330–340, 2003, doi: 10.1007/978-3-540-45231- 7_31.

P. Galeano and D. Pella, “Multivariate Analysis in Vector Time Series,” Resenhas, the Journal of the Institute of Mathematics and Statistics of the University of Sao Paolo, vol. 4, pp. 383–403, 2000.

B. S. Everitt, S. Landau, M. Leese, & D. Stahl, “Cluster Analysis: Fifth Edition.” United Kingdom: John Wiley and Son, Ltd., 2011.

Oti, Eric U., Olusola, Michael O, “Overview of Agglomerative Hierarchical Clustering Methods,” British Journal of Computer, Networking and Information Technology, vol. 7, pp. 14-23, 2024. [Online]. Available: https://doi.org/10.52589/bjcnit-cv9poogw

Chen, J., Wang, J., Cheng, S., Shi, Y. “Brain Storm Optimization with Agglomerative Hierarchical Clustering Analysis. In: Tan, Y., Shi, Y., Li, L. (eds) Advances in Swarm Intelligence.” ICSI 2016. Lecture Notes in Computer Science(), vol 9713. Springer, Cham, 2016. [Online]. Available: https://doi.org/10.1007/978-3-319-41009-8_12

Suwarti, Mulyono, & Prasetiyo, B., “Pembuatan Monitoring Kecepatan Angin dan Arah Angin Menggunakan Mikrokontroler Arduino”, Seminar Nasional Pendidikan, Sains dan Teknologi, vol. 5, no. 1, pp. 56–64, 2017. [Online]. Available: https://jurnal.unimus.ac.id/index.php/psn12012010/article/viewFile/3152/3048

[1] F. Zhao, X. Hu, L. Wang, J. Zhao, J. Tang, and Jonrinaldi, “A reinforcement learning brain storm optimization algorithm with learning mechanism,” *Knowledge-Based Systems*, vol. 235, 2021. [Online]. Available: https://doi.org/10.1016/j.knosys.2021.107645

D. A. I. C. Dewi & D. A. K. Pramita, “Analisis Perbandingan Metode Elbow dan Silhouette pada Algoritma Clustering K-Medoids dalam Pengelompokan Produksi Kerajinan Bali,” Matrix: Jurnal Manajemen Teknologi dan Informatika, vol. 9, no. 3, pp. 102–109, 2019, [Online]. Available: 10.31940/matrix.v9i3.1662

A. Mario, S. Herry, and H. Nasution, “Pemilihan Distance Measure Pada K-Means Clustering Untuk Pengelompokkan Member Di Alvaro Fitness,” Jurnal Sistem dan Teknologi Informasi, vol. 1, no. 1, pp. 1–6, 2016.

L. Kaufman dan P. J. Rousseeuw, “Finding Groups in Data: An Introduction to Cluster Analysis”, 1991. [Online]. Available: 10.2307/2532178.

“Average Wind Speed,” Badan Meteorologi, Klimatologi, dan Geofisika. Accessed: Nov, 1, 2025. [Online]. Available: https://dataonline.bmkg.go.id/beranda.

Riasa, Nyoman and Hartati, Rukmi and Manuaba, I B G and Santiari Dewa, “Pengaruh PLTB Sidrap Terhadap Sistem Kelistrikan Sulawesi Selatan,” Majalah Ilmiah Teknologi Elektro, vol. 19, pp: 27, 2020. [Online]. Available: 10.24843/MITE.2020.v19i01.P04

WAISNAWA, I Gd N Suta; RAJENDRA, I Made; SUDANA, I Made. “

ANALISIS RISIKO INVESTASI PEMBANGKIT LISTRIK TENAGA BAYU DI NUSA PENIDA.” Matrix : Jurnal Manajemen Teknologi dan Informatika, [S.l.], v. 5, n. 2, p. 1, feb. 2017. ISSN 2580-5630. [Online]. Available: https://ojs.pnb.ac.id/index.php/matrix/article/view/85

A. Zakaria, I. Akbar, E. Muljadi, Suwarno and N. Hariyanto, "Grid Impact Study of Tanah Laut Wind Power Generation in Indonesia's Energy Transition," 2024 IEEE Industry Applications Society Annual Meeting (IAS), Phoenix, AZ, USA, 2024, pp. 1-6, [Online]. Available: 10.1109/IAS55788.2024.11023687

A. Wulan andi, “TRANSISI ENERGI DI DAERAH TERPENCIL: STUDI KASUS IMPLEMENTASI SISTEM HYBRID PLTS-PLTD DI TEMAJOK, KALIMANTAN BARAT,” Technopex, vol. 9, no. 1, pp. 270–276, 2025. [Online]. Available: https://semnas.iti.ac.id/tpx/index.php/c/article/view/103

M. I. Amba and R. Dalimi, “Economic Analysis of Hybrid Power Plant (Solar-Diesel) on Kawaluso Island, North Sulawesi,” Jurnal EECCIS (Electrics, Electronics, Communications, Controls, Informatics, Systems), vol. 17, no. 1, pp. 13–21, 2023. [Online]. Available: https://doi.org/10.21776/jeeccis.v17i1.1633




DOI: http://dx.doi.org/10.30829/zero.v9i3.27088

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Publisher :
Department of Mathematics
Faculty of Science and Technology
Universitas Islam Negeri Sumatera Utara Medan
📱 WhatsApp:085270009767 (Admin Official)
SINTA 2 Google Scholar CrossRef Garuda DOAJ