Fuzzy-AHP for Teaching Quality Assessment and Student Performance Prediction in Mathematics Education Program
Abstract
This study proposes a fuzzy–Analytic Hierarchy Process (Fuzzy-AHP) model to evaluate teaching quality and predict student academic performance in a Mathematics Education program, based on data collected from 100 undergraduate Mathematics Education students (n = 100). A structured Evaluation Index System (EIS) comprising six criteria and twenty-six sub-criteria was constructed, with criterion weights derived using AHP based on expert judgments and student responses represented as triangular fuzzy numbers. The model produces composite teaching quality scores through fuzzy aggregation and centroid defuzzification, identifying Integration and Relevance of Teaching as the most influential dimension. Predictive validation using Spearman correlation and linear regression confirms a significant positive relationship between teaching quality and academic performance (ρ = 0.46, p < .01), with instructional quality explaining 21% of performance variance. From an applied mathematics perspective, this study contributes a formally structured fuzzy-AHP modelling framework with empirical predictive validation, advancing teaching quality assessment beyond descriptive ranking toward evidence-based performance prediction.
Keywords
Full Text:
PDFReferences
M. Radja, M. A. Londa, and K. Sara, “Penerapan Metode Logika Fuzzy dalam Evaluasi Kinerja Dosen,” 2020. doi: 10.31940/matrix.v10i2.1841.
“View of Metode Fuzzy AHP (Analytical Hierarchy Process) untuk Pemilihan Metode Pembelajaran Demi Menunjang Pembelajaran Matematika.pdf.”
A. D. Yasa, D. D. Chrisyarani, D. M. Utama, and R. K. Werdiningtiyas, “Evaluating teaching performance in elementary schools based on multi-criterion decision making,” J. Phys. Conf. Ser., vol. 1402, no. 7, 2019, doi: 10.1088/1742-6596/1402/7/077109.
R. Harrison et al., “Evaluating and enhancing quality in higher education teaching practice: a meta- review,” Stud. High. Educ., vol. 47, no. 1, pp. 80–96, 2022, doi: 10.1080/03075079.2020.1730315.
E. M. Ganyaupfu, “Teaching Methods and Students’ Academic Performance,” Int. J. Humanit. Soc. Sci. Invent. ISSN (Online, vol. 2, no. 9, pp. 2319–7722, 2013, [Online]. Available: www.ijhssi.org
Muhammad Haris Diponegoro, Sri Suning Kusumawardani, and Indriana Hidayah, “Tinjauan Pustaka Sistematis: Implementasi Metode Deep Learning pada Prediksi Kinerja Murid,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 10, no. 2, pp. 131–138, 2021, doi: 10.22146/jnteti.v10i2.1417.
“Lin H_View of Influences of Artificial Intelligence in Education on Teaching Effectiveness.pdf.”
F. Biwer, A. de Bruin, and A. Persky, “Study smart – impact of a learning strategy training on students’ study behavior and academic performance,” Adv. Heal. Sci. Educ., vol. 28, no. 1, pp. 147–167, 2023, doi: 10.1007/s10459-022-10149-z.
S. Rinaldi and others, “Implementasi Metode Analytical Hierarchy Process dan Simple Additive Weighting untuk Pemilihan Dosen Terbaik Studi Kasus STMIK Atma Luhur,” 2019.
J. P. A. Runtuwene and I. R. H. T. Tangkawarow, “The quality classification of professional teacher using fuzzy-analytical hierarchy process,” IOP Conf. Ser. Mater. Sci. Eng., vol. 830, no. 2, 2020, doi: 10.1088/1757-899X/830/2/022099.
L. Zhang, H. Fu, and N. Wan, “Research on the Application of AHP and Fuzzy Comprehensive Evaluation of Teaching Quality in Basic Mathematics Classroom,” Creat. Educ., vol. 09, no. 15, pp. 2615–2626, 2018, doi: 10.4236/ce.2018.915197.
X. Zhang and Y. Liu, “Evaluating the undergraduate course based on a fuzzy ahp-fis model,” Int. J. Mod. Educ. Comput. Sci., vol. 12, no. 6, pp. 55–66, 2020, doi: 10.5815/ijmecs.2020.06.05.
C. Kahraman, B. Öztayşi, I. Uçal Sari, and E. Turanoǧlu, “Fuzzy analytic hierarchy process with interval type-2 fuzzy sets,” Knowledge-Based Syst., vol. 59, pp. 48–57, 2014, doi: 10.1016/j.knosys.2014.02.001.
“Tampilan SISTEM PENDUKUNG KEPUTUSAN PENILAIAN TENAGA KEPENDIDIKAN DENGAN METODE FUZZY ANALYTIC HIERARCHY PROCESS.pdf.”
M. G. Wonoseto and M. Y. Alfiandy, “Implementasi Metode Fuzzy AHP untuk Sistem Pendukung Keputusan Peminjaman pada Koperasi Kredit Sejahtera,” J. Sist. Inf. Bisnis, vol. 13, no. 2, pp. 104–111, 2023, doi: 10.21456/vol13iss2pp104-111.
Y. Gao, “Deep learning-based strategies for evaluating and enhancing university teaching quality,” Comput. Educ. Artif. Intell., vol. 8, no. September 2024, 2025, doi: 10.1016/j.caeai.2025.100362.
Y. Liu, C. M. Eckert, and C. Earl, A review of fuzzy AHP methods for decision-making with subjective judgements, vol. 161. 2020. doi: 10.1016/j.eswa.2020.113738.
J. MacLeod, H. H. Yang, S. Zhu, and Y. Li, “Understanding students’ preferences toward the smart classroom learning environment: Development and validation of an instrument,” Comput. Educ., vol. 122, no. March, pp. 80–91, 2018, doi: 10.1016/j.compedu.2018.03.015.
“View of PENERAPAN METODE FUZZY AHP (Analytical Hierarchy Process) SEBAGAI SISTEM PENDUKUNG KEPUTUSAN DOSEN TERBAIK (Studi Kasus _ STMIK PRINGSEWU).pdf.”
L. S. Shulman, “Those who understand: Knowledge growth in teaching,” Profesorado, vol. 23, no. 3, pp. 269–295, 2019, doi: 10.30827/profesorado.v23i3.11230.
J. Biggs, “Enhancing teaching through constructive alignment,” High. Educ., vol. 32, no. 3, pp. 347–364, 1996, doi: 10.1007/BF00138871.
T. L. Saaty, “Decision-making with the AHP: Why is the principal eigenvector necessary,” Eur. J. Oper. Res., vol. 145, no. 1, pp. 85–91, 2003, doi: 10.1016/S0377-2217(02)00227-8.
N. Li, “A Fuzzy Evaluation Model of College English Teaching Quality Based on Analytic Hierarchy Process,” Int. J. Emerg. Technol. Learn., vol. 16, no. 2, pp. 17–30, 2020, doi: 10.3991/ijet.v16i02.19731.
B. Yalcin Kavus, K. Yazici Sahin, A. Taskin, and T. K. Karaca, “A Hybrid IVFF-AHP and Deep Reinforcement Learning Framework for an ATM Location and Routing Problem,” Appl. Sci., vol. 15, no. 12, pp. 1–27, 2025, doi: 10.3390/app15126747.
B. Kong and C. He, “Deep learning and fuzzy algorithm in improving the effectiveness of college English translation teaching,” Comput. Educ. Artif. Intell., vol. 8, no. September 2024, 2025, doi: 10.1016/j.caeai.2025.100378.
K. Ali and A. Al-Hameed, “Spearman’s correlation coefficient in statistical analysis,” Int. J. Nonlinear Anal. Appl, vol. 13, no. May 2021, pp. 2008–6822, 2022, [Online]. Available: http://dx.doi.org/10.22075/ijnaa.2022.6079
J. Shen, “Linear Regression,” Encycl. Database Syst., pp. 1622–1622, 2009, doi: 10.1007/978-0-387-39940-9_542.
L. Zhao, P. Xu, Y. Chen, and S. Yan, “A literature review of the research on students’ evaluation of teaching in higher education,” Front. Psychol., vol. 13, no. September, pp. 1–9, 2022, doi: 10.3389/fpsyg.2022.1004487.
A. Chalkiadaki, “A systematic literature review of 21st century skills and competencies in primary education,” Int. J. Instr., vol. 11, no. 3, pp. 1–16, Jul. 2018, doi: 10.12973/iji.2018.1131a.
Y. Yan, H. Qin, and Y. Li, “Digital Empowerment in the Blended Teaching Design and Practice of Statistics: A Case Study on Simple Linear Regression,” pp. 366–372, 2025, doi: 10.1145/3746469.3746529.
D. I. Sihombing, T. Naibaho, and A. S. Situmorang, “Evaluating the influencing factors high order thinking skills of outstanding student by analytic hierarchy process (AHP) method,” AXIOM J. Pendidik. dan Mat., vol. 13, no. 2, p. 244, 2024, doi: 10.30821/axiom.v13i2.22124.
DOI: http://dx.doi.org/10.30829/zero.v9i3.27041
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Publisher : Department of Mathematics Faculty of Science and Technology Universitas Islam Negeri Sumatera Utara Medan | |
✉️ Email: zero_journal@uinsu.ac.id 📱 WhatsApp:085270009767 (Admin Official) | |
| | | | |
