Comparative Analysis of SmartPLS, WarpPLS, and R Studio: Accuracy, Features, Usability, and Licensing
Abstract
Keywords
Full Text:
PDFReferences
. J. F. Hair, G. T. M. Hult, C. M. Ringle, and A. Sarstedt, A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 2nd ed. Thousand Oaks, CA: SAGE, 2017. [Online]. Available: https://doi.org/10.15358/9783800653614
. F. Fajar, W. Warsito, and A. Sugiharto, “Pengembangan aplikasi analisis PLS-SEM berbasis R Shiny dan penerapan UTAUT2 untuk evaluasi penerimaan sistem informasi,” JST (Jurnal Sains dan Teknologi), vol. 13, no. 1, pp. 147–158, 2024. [Online]. Available: https://doi.org/10.23887/jstundiksha.v13i1.68568
. F. Ali, S. M. Rasoolimanesh, M. Sarstedt, C. M. Ringle, and K. Ryu, “An assessment of the use of partial least squares structural equation modeling (PLS-SEM) in hospitality research,” Int. J. Contemp. Hosp. Manag., vol. 30, no. 1, pp. 514–538, 2018. [Online]. Available: https://doi.org/10.1108/IJCHM-10-2016-0568
. M. Tenenhaus, V. E. Vinzi, Y.-M. Chatelin, and C. Lauro, “PLS path modeling,” Comput. Stat. Data Anal., vol. 48, no. 1, pp. 159–205, 2004. [Online]. Available: https://doi.org/10.1016/j.csda.2004.03.005
. G. Cepeda-Carrion, J. G. Cegarra-Navarro, and D. Jiménez-Jiménez, “The effect of absorptive capacity on innovation performance: Comparing PLS-SEM and CB-SEM,” Technol. Forecast. Soc. Change, vol. 150, 2019. [Online]. Available: https://doi.org/10.1016/j.techfore.2019.119762
. G. Cepeda and J. L. Roldán, “Using PLS-SEM in management research: A practical guide,” Eur. J. Manag. Bus. Econ., 2019. [Online]. Available: https://doi.org/10.1108/EJMBE-11-2018-0116
.
. J. M. Becker, A. Rai, C. M. Ringle, and F. Völckner, “Discovering unobserved heterogeneity in PLS path modeling,” MIS Q., vol. 37, no. 3, 2013. [Online]. Available: https://doi.org/10.25300/MISQ/2013/37.3.01
. J. Henseler, “Bridging design and behavioral research with variance-based SEM,” J. Advert., vol. 46, no. 1, 2017. [Online]. Available: https://doi.org/10.1080/00913367.2017.1281780
. M. A. Memon, J. H. Cheah, T. Ramayah, H. Ting, and F. Chuah, “Mediation analysis issues and recommendations,” J. Appl. Struct. Eq. Model., 2018. [Online]. Available: https://doi.org/10.47263/jasem.2(1)01
. E. E. Rigdon, “Choosing PLS path modeling as analytical method,” Eur. Manag. J., vol. 34, no. 6, pp. 598–605, 2016. [Online]. Available: https://doi.org/10.1016/j.emj.2016.05.006
. J. Benitez, J. Henseler, A. Castillo, and F. Schuberth, “How to perform and report an impactful analysis using PLS-SEM,” Inf. Manag., vol. 57, no. 2, pp. 103–120, 2020. [Online]. Available: https://doi.org/10.1016/j.im.2019.05.003
. N. Kock, “Common method bias in PLS-SEM,” Int. J. e-Collab., vol. 11, no. 4, pp. 1–10, 2015. [Online]. Available: https://doi.org/10.4018/ijec.2015100101
. G. Shmueli, S. Ray, J. M. V. Estrada, and S. B. Chatla, “The elephant in the room: Predictive performance of PLS models,” J. Bus. Res., vol. 69, pp. 4552–4564, 2016. [Online]. Available: https://doi.org/10.1016/j.jbusres.2016.03.049
. J. Cheah, M. Sarstedt, C. M. Ringle, and H. Ting, “A comparison of PLS-SEM and CB-SEM: Evidence from international marketing research,” Int. J. Mark. Res., 2022. [Online]. Available: https://doi.org/10.1177/14707853221074679
. J. Evermann and M. Tate, “Assessing predictive performance of PLS path models,” J. Bus. Res., vol. 69, no. 10, pp. 4529–4535, 2016. [Online]. Available: https://doi.org/10.1016/j.jbusres.2016.03.050
. J. Evermann and M. Tate, “Assessing predictive performance of PLS models,” J. Bus. Res., vol. 117, pp. 458–468, 2020. [Online]. Available: https://doi.org/10.1016/j.jbusres.2020.05.037
. M. Kumar and K. Purani, “Model selection in PLS-SEM: An empirical comparison,” J. Hosp. Tour. Technol., vol. 9, no. 3, pp. 278–291, 2018. [Online]. Available: https://doi.org/10.1108/JHTT-11-2017-0122
. R. F. Falk and N. B. Miller, A Primer for Soft Modeling with Partial Least Squares. Cham, Switzerland: Springer, 2021. [Online]. Available: https://doi.org/10.1007/978-3-030-78331-0
. H. Latan and R. Noonan, Partial Least Squares Path Modeling. Cham, Switzerland: Springer, 2017. [Online]. Available: https://doi.org/10.1007/978-3-319-64069-3
. M. Sarstedt, C. M. Ringle, and J. F. Hair, “Progress in PLS-SEM use in marketing research: An update and assessment,” Psychol. Mark., 2022. [Online]. Available: https://doi.org/10.1002/mar.21658
. J. Chiarelli et al., “Calculating the precision of student-generated datasets using RStudio,” J. Chem. Educ., vol. 102, no. 2, pp. 909–916, 2025. [Online]. Available: https://doi.org/10.1021/acs.jchemed.4c00870
. Bleichrodt et al., “StatModPredict: A user-friendly R-Shiny interface for fitting and forecasting with statistical models,” PLoS One, vol. 20, no. 8, e0329791, 2025. [Online]. Available: https://doi.org/10.1371/journal.pone.0329791
. C. M. Ringle and M. Sarstedt, “The future of PLS-SEM,” Eur. Bus. Rev., 2024. [Online]. Available: https://doi.org/10.1108/EBR-11-2023-0203
. J. F. Hair, L. M. Matthews, R. L. Matthews, and M. Sarstedt, “Advances in PLS-SEM: Theory, methodology, and practice,” J. Bus. Res., vol. 152, pp. 345–360, 2023. [Online]. Available: https://doi.org/10.1016/j.jbusres.2022.06.004
. B. W. Cintika and V. Gunawan, “Development of customer loyalty measurement application using R Shiny,” JITEKI, vol. 9, no. 4, pp. 45–56, 2023. [Online]. Available: https://doi.org/10.26555/jiteki.v9i4.26649
. C. Fornell and D. F. Larcker, “Evaluating structural equation models with unobservable variables and measurement error,” J. Mark. Res., vol. 18, no. 1, pp. 39–50, 1981. [Online]. Available: https://doi.org/10.1177/002224378101800104
. T. K. Dijkstra and J. Henseler, “Consistent partial least squares path modeling,” MIS Q., vol. 39, no. 2, pp. 297–316, 2015. [Online]. Available: https://doi.org/10.25300/MISQ/2015/39.2.02
. W. W. Chin, “The partial least squares approach to structural equation modeling,” in Modern Methods for Business Research, G. A. Marcoulides, Ed. Mahwah, NJ: Lawrence Erlbaum, 1998, pp. 295–336. [Online]. Available: https://doi.org/10.4324/9781410604385-9
. Monecke and F. Leisch, “semPLS: Structural equation modeling using partial least squares,” J. Stat. Soft., vol. 48, no. 3, pp. 1–32, 2012. [Online]. Available: https://doi.org/10.18637/jss.v048.i03
. Chanda, A., Vafaei-Zadeh, H., Hanifah, H., and Thurasamy, R., “Modeling eco-friendly house purchasing intention: A combined study of PLS-SEM and FSQCA approaches,” Int. J. Housing Markets Anal., vol. 18, no. 1, pp. 123–157, 2025. [Online]. Available: https://doi.org/10.1108/IJHMA-04-2023-0059
. J. F. Hair and C. M. Ringle, “Covariance-based structural equation modeling (CB-SEM): A SmartPLS 4 software tutorial,” J. Market Anal., vol. 13, pp. 709–724, 2025. [Online]. Available: https://doi.org/10.1057/s41270-025-00414-6
. Tavana, M., Soltanifar, M., and Santos, J., “Analytical hierarchy process: Revolution and evolution,” Ann. Oper. Res., vol. 326, pp. 879–907, 2023. [Online]. Available: https://doi.org/10.1007/s10479-021-04432-2
DOI: http://dx.doi.org/10.30829/zero.v9i3.27040
Refbacks

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Publisher : Department of Mathematics Faculty of Science and Technology Universitas Islam Negeri Sumatera Utara Medan | |
✉️ Email: zero_journal@uinsu.ac.id 📱 WhatsApp:085270009767 (Admin Official) | |
| | | | |
