Adaptive Learning in Higher Education: A Stochastic Modeling Approach Revealing Absorbing States and Dominant Adaptive Parameters

Ruth Mayasari Simanjuntak

Abstract


This study evaluates the effectiveness of adaptive learning methods using an integrated stochastic modeling framework. Empirical analysis based on real data from 30 students, and stochastic simulation-based analysis (DTMC, Monte Carlo, Sobol, and HBM) used for modeling, probabilistic validation, and parameter sensitivity exploration. A Discrete-Time Markov Chain was applied to model transitions in learner ability, and Monte Carlo simulation was used to validate the probabilistic behavior. The Sobol sensitivity method identified the dominant parameters, while Hierarchical Bayesian Modeling accounted for inter-student variability. The findings show consistent upward transitions, with no students regressing to lower ability states and those in the High category remaining in an absorbing state. Sensitivity analysis indicates that adaptivity level (α) has the strongest influence on performance improvement, followed by difficulty ratio (λ) and feedback frequency (β). The Bayesian model explains more than 70% of the variance in learning gains. Overall, the study concludes that stochastic modeling provides a robust framework for evaluating adaptive learning systems and demonstrates that well-designed adaptive mechanisms significantly enhance student performance, with engagement measured through system interaction logs.


Keywords


Stochastic Modeling, Discrete-Time Markov Chain, Monte Carlo, Adaptive Learning

Full Text:

PDF

References


Aulia, H., Chairani, Z., & Agustina, W. (2019). Contextual teaching and learning untuk meningkatkan hasil belajar siswa pada materi aritmatika sosial. In JP2M (Jurnal Pendidikan dan Pembelajaran Matematika) (Vol. 5, Issue 2, p. 58). STKIP PGRI Tulungagung. https://doi.org/10.29100/jp2m.v5i2.1753

Emerson, A., Min, W., Azevedo, R., & Lester, J. C. (2022). Early prediction of student knowledge in game‐based learning with distributed representations of assessment questions. In British Journal of Educational Technology (Vol. 54, Issue 1, p. 40). Wiley. https://doi.org/10.1111/bjet.13281

Rahmawati, I. S. (2023). Evaluasi Program Pendidikan: Tinjauan Terhadap Efektivitas dan Tantangan. In El-Idare Jurnal Manajemen Pendidikan Islam (Vol. 9,Issue 2, p. 128). https://doi.org/10.19109/elidare.v9i2.20229

Maslahah, N. (2022). Model Pembelajaran Aktif, Kreatif, Efektif dan Menyenangkan (PAKEM) Dengan Media Interaktif : Dampak Terhadap Pemahaman Konsep Matematis. In Jurnal Silogisme Kajian Ilmu Matematika dan Pembelajarannya (Vol. 7, Issue 1, p. 29). https://doi.org/10.24269/silogisme.v7i1.3243

Rohmaini, L., Netriwati, N., Komarudin, K., Nendra, F., & Qiftiyah, M. (2020). PENGEMBANGAN MODUL PEMBELAJARAN MATEMATIKA BERBASIS ETNOMATEMATIKA BERBANTUAN WINGEOM BERDASARKAN LANGKAH BORG AND GALL. In Teorema Teori dan Riset Matematika (Vol. 5, Issue 2, p. 176). https://doi.org/10.25157/teorema.v5i2.3649

Hasrul, H., Yunus, Muh., & AS, H. (2022). Penerapan Model Pembalajaran Predict-Observe- Explain (POE) untuk Meningkatkan Hasil Belajar Siswa. EDUKATIF JURNAL ILMU PENDIDIKAN, 4(1), 1006. https://doi.org/10.31004/edukatif.v4i1.1972

Rambe, N. R., & Mirna, W. (2022). ADAPTASI MODEL ADiK (AKTIF, DISKUSI, DAN KREATIF) DALAM MENULIS TEKS EKSPLANASI. In JURNAL PENELITIAN BIDANG PENDIDIKAN (Vol. 28, Issue 1, p. 14). State University of Medan. https://doi.org/10.24114/jpbp.v28i1.33149

Indriawati, Buchori, I., Acip, Sirrulhaq, S., & Solihutaufa, E. (2021). MODEL DAN STRATEGI PEMBELAJARAN. In Al-Hasanah Jurnal Pendidikan Agama Islam (Vol. 6, Issue 2, p. 274). https://doi.org/10.51729/6246

Dewi, P. (2020). Peningkatan Motivasi Dan Hasil Belajar Siswa Dengan Menerapkan Peer Tutoring. Jurnal Inovasi Pembelajaran Kimia, 2(2), 51. https://doi.org/10.24114/jipk.v2i2.19478

Arifin, Z., & Firmansyah, R. (2020). Implementasi Strategi Think, Talk, Write Dalam Meningkatkan Keaktifan Belajar Siswa Pada Pembelajaran Al-Islam di SMP Muhammadiyah Pondok Modern Paciran Lamongan. In TADARUS (Vol. 9, Issue 2). Universitas Muhammadiyah Surabaya. https://doi.org/10.30651/td.v9i2.6758

Trisnaningsih, S. (2023). MODEL PEMBELAJARAN DENGAN METODE TEAM TEACHING. In SenSaSi (Vol. 2, Issue 1, p. 65). https://doi.org/10.33005/sensasi.v2i1.60

Khajah, M. M. (2024). Supercharging BKT with Multidimensional Generalizable IRT and Skill Discovery. Journal of Educational Data Mining, 16(1), 233-278. https://jedm.educationaldatamining.org/index.php/JEDM

Aldila, A. S., Supriyono, L. A., Previana, C. N., & Habibie, D. R. (2024). The effectiveness of adaptive learning systems integrated with LMS in higher education. Jurnal KomtekInfo, 49-56. https://doi.org/10.35134/komtekinfo.v11i2.505

Sari, H. E., Tumanggor, B., & Efron, D. (2024). Improving educational outcomes through adaptive learning systems using AI. International Transactions on Artificial Intelligence, 3(1), 21-31. https://doi.org/10.33050/italic.v3i1.647

Siswanti, T., Chai, N., & Som, R. (2025). The Future of Adaptive Learning Systems in Education. Journal International Inspire Education Technology, 4(1), 101-111. https://doi.org/10.55849/jiiet.v4i1.792

Kouye, H. M., & Mazo, G. (2025). Regularizing nested Monte Carlo Sobol'index estimators to balance the trade-off between explorations and repetitions in global sensitivity analysis of stochastic models. International Journal for Uncertainty Quantification, 15(5).

Dwika, R. (2022). Penerapan Metode Monte Carlo pada Simulasi Prediksi Jumlah Calon Mahasiswa Baru Universitas Muhammadiyah Bengkulu: Penerapan Metode Monte Carlo Pada Simulasi Prediksi Jumlah Calon Mahasiswa Baru Universitas Muhmammadiyah Bengkulu. Jurnal PROCESSOR, 17(2), 74-81. https://doi.org/10.33998/processor.2022.17.2.1224

Tosin, M., Côrtes, A. M., & Cunha, A. (2020). A tutorial on sobol’global sensitivity analysis applied to biological models. Networks in Systems Biology: Applications for Disease Modeling, 93-118.

Le, T. T., & Le, A. T. (2024). Implementing Sobol's Global Sensitivity Analysis to SFRC's Flexural Strength Predictive Equation. Journal of Advanced Engineering and Computation, 8(3), 175-186. http://dx.doi.org/10.55579/jaec.202483.464

Allenby, G. M., & Rossi, P. E. (2006). Hierarchical bayes models. The handbook of marketing research: Uses, misuses, and future advances, 418-440.

Keller, J. M., & Suzuki, K. (2020). Learner motivation and e-learning design: A multi-theoretical perspective. New York: Routledge.

Khakata, E., Omwenga, V., & Msanjila, S. (2020). A Stochastic Modelling Approach to Student Performance Prediction on an Internet-Mediated Environment. Computer Engineering and Applications Journal, 9(2), 93-106.

Bhattacharya RN, Waymire EC. (2009). Stochastic processes with applications. Society for Industrial and Applied Mathematics.




DOI: http://dx.doi.org/10.30829/zero.v9i3.26991

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Publisher :
Department of Mathematics
Faculty of Science and Technology
Universitas Islam Negeri Sumatera Utara Medan
📱 WhatsApp:085270009767 (Admin Official)
SINTA 2 Google Scholar CrossRef Garuda DOAJ