Text Mining and News Sentiment Analysis of the PPRT (Domestic Worker Protection) Bill in Three Online News Media From 2004 to 2024
Abstract
The Domestic Worker Protection Bill (RUU PPRT) has been a critical issue in Indonesia, yet its legislative process has stagnated for two decades, leading to intense public discourse. This study aims to analyze the sentiment and narrative dynamics of RUU PPRT news coverage in online media, as well as the media's role in shaping public opinion. Employing a Text Mining and Lexicon-Based Sentiment Analysis approach, enhanced with adaptations for the Indonesian lexicon, this research analyzes 387 news articles from three prominent online media outlets (Tempo, Kompas, and VOA News) published between 2004 and 2024. The findings reveal that positive sentiment dominates with 58.1%, followed by negative sentiment at 31.3%, and neutral sentiment at 10.6%. Tempo was identified as the most active media outlet covering this issue. These results indicate that the mass media plays a significant role in shaping the pattern of public discourse regarding the PPRT Bill, particularly through the dominance of positive sentiment in its reporting and confirm that lexicon-based sentiment analysis can systematically capture the dynamics of complex socio-political narratives.
Keywords
Full Text:
PDFReferences
C. P. F. Anugrah and A. S. Ruslie, “Urgensi Pengaturan dan Perlindungan Hukum Bagi Pekerja Rumah Tangga di Indonesia,” Media Hukum Indonesia, vol. 2, no. 4, pp. 895–902, Dec. 2024, doi: 10.5281/zenodo.14349190.
T. Kurnianingrum and R. Yamin, “Urgensi Perlindungan Terhadap Pekerja Rumah Tangga,” Info Singkat: Kajian Singkat Terhadap Isu Aktual dan Strategis, vol. 16, no. 18, pp. 21–25, Sep. 2024.
D. Harahap, “Kekerasan Terhadap PRT Terus Meningkat, Pengesahan RUU PPRT Diminta jangan Gagal lagi,” MediaIndonesia, Feb. 2024.
C. Putra, F. Anugrah, and A. S. Ruslie, “Media Hukum Indonesia (MHI) Published by Yayasan Daarul Huda Krueng Mane Urgensi Pengaturan dan Perlindungan Hukum Bagi Pekerja Rumah Tangga di Indonesia,” vol. 2, no. 4, p. 895, 2024, doi: 10.5281/zenodo.14349190.
D. Putri and V. P. Hanjani, “Ketika Hak Pekerja Rumah Tangga Terabaikan: Potret Realitas Dan Jalan Legislasi Ruu Pprt (Rancangan Undang-Undang Perlindungan Pekerja Rumah Tangga) Yang Mangkrak,” RINEKA: Jurnal Antropologi, vol. 1, no. 1, pp. 63–74, Jun. 2025.
A. Parvez, A. V. Superani, and I. N. Juaningsih, “Rekonstruksi RUU PPRT Sebagai Upaya Perlindungan Hukum Dalam Penanggulangan Kekerasan Terhadap PRT Perempuan dan Anak,” Ikatan Penulis Mahasiswa Hukum Indonesia Law Journal, vol. 2, no. 2, pp. 232–250, Feb. 2022, doi: 10.15294/ipmhi.v2i2.54782.
D. N. Kristiyani, “Analisis framing pemberitaan media: dinamika pengesahan RUU PPRT menggunakan model Robert M. Entman,” Jurnal Komunikasi Universitas Garut: Hasil Pemikiran dan Penelitian, vol. 11, no. 2, pp. 603–621, Oct. 2025.
P. Laksono, I. K. Pesantren Abdul Chalim, and K. Massa, “Kuasa Media dalam Komunikasi Massa,” vol. 4, no. 2, pp. 49–61, Oct. 2019.
Sri Choiriyati, “Peran Media Massa dalam Membentuk Opini Publik,” Perspektif, vol. 2, no. 2, 2015.
A. Mustopa, Hermanto, Anna, E. B. Pratama, A. Hendini, and D. Risdiansyah, “Analysis of user reviews for the pedulilindungi application on google play using the support vector machine and naive bayes algorithm based on particle swarm optimization,” in 2020 5th International Conference on Informatics and Computing, ICIC 2020, Institute of Electrical and Electronics Engineers Inc., Nov. 2020. doi: 10.1109/ICIC50835.2020.9288655.
F. Aftab, S. U. Bazai, L. Baloch, S. Aslam, Amphawan Angela;, and T. K. Neo, “A Comprehensive Survey on Sentiment Analysis Techniques,” International Journal of Technolgy (IJTech), vol. 14, no. 6, pp. 1288–1298, Oct. 2023, doi: https://doi.org/10.14716/ijtech.v14i6.6632.
D. Tribuana, U. Usman, and D. Dayanti, “Penerapan Natural Language Processing Untuk Analisis Sentimen Terhadap Layanan Publik Di Media Sosial Twitter,” Jurnal Teknologi dan Bisnis Cerdas, vol. 1, no. 1, pp. 28–37, Jul. 2025, doi: 10.64476/jtbc.v1i1.3.
S. Vijay Gaikwad, A. Chaugule, and P. Patil, “Text Mining Methods and Techniques,” Int J Comput Appl, vol. 85, no. 17, pp. 975–8887, Jan. 2014.
Y. A. Hafiz and E. Sudarmilah, “Impelementasi Web Scaping Pada Portal Berita Online,” Inisiasi: Jurnal Inovasi dan teknologi, vol. 12, Oct. 2023.
A. Ahmed and A. Salam, “Automatic Scientific Literature Gathering and Analysis from Textual Corpus using Web Scraping and Locality Sensitive Hashing,” IEEE-SEM, vol. 11, no. 8, pp. 75–80, Aug. 2023.
M. Aqib, R. Mehmood, A. Alzahrani, I. Katib, A. Albeshri, and S. M. Altowaijri, “Smarter traffic prediction using big data, in-memory computing, deep learning and gpus,” Sensors (Switzerland), vol. 19, no. 9, May 2019, doi: 10.3390/s19092206.
H. Suyal, A. Panwar, and A. S. Negi, “Text Clustering Algorithms: A Review,” International Jurnal of Computer Applications, vol. 96, no. 24, 2014.
S. R. Shah, A. Kaushik, S. Sharma, and J. Shah, “Opinion-Mining on Marglish and Devanagari Comments of YouTube Cookery Channels Using Parametric and Non-Parametric Learning Models,” big data and cognitive comouting, vol. 4, no. 3, pp. 1–19, Mar. 2020, doi: https://doi.org/10.3390/bdcc4010003.
T. Bintang, S. Silalahi, and A. Toni, “Pengaruh Pro & Kontra Pilkada 2020 Pada Media Sosial Twitter (Drone Emprit: Pilkada 2020-Pro & Kontra),” Communication, vol. 12, no. 2, pp. 143–153, Oct. 2021.
M. K. A. Reiki, Y. Sibaroni, and E. B. Setiawan, “Comparison of Term Weighting Methods in Sentiment Analysis of the New State Capital of Indonesia with the SVM Method,” International Journal on Information and Communication Technology (IJoICT), vol. 8, no. 2, pp. 53–65, Jan. 2023, doi: 10.21108/ijoict.v8i2.681.
M. Kayest and S. K. Jain, “Optimization driven cluster based indexing and matching for the document retrieval,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 3, pp. 851–861, Mar. 2022, doi: 10.1016/j.jksuci.2019.02.012.
L. C. Chen, “An extended TF-IDF method for improving keyword extraction in traditional corpus-based research: An example of a climate change corpus,” Data Knowl Eng, vol. 153, Sep. 2024, doi: 10.1016/j.datak.2024.102322.
I. Arroyo-Fernández, C. F. Méndez-Cruz, G. Sierra, J. M. Torres-Moreno, and G. Sidorov, “Unsupervised sentence representations as word information series: Revisiting TF–IDF,” Comput Speech Lang, vol. 56, pp. 107–129, Jul. 2019, doi: 10.1016/j.csl.2019.01.005.
L. Gomes, R. da Silva Torres, and M. L. Côrtes, “BERT- and TF-IDF-based feature extraction for long-lived bug prediction in FLOSS: A comparative study,” Inf Softw Technol, vol. 160, pp. 1–2, Aug. 2023, doi: 10.1016/j.infsof.2023.107217.
H. Abkoriyah and T. T. Dewi, “Objektivitas Berita di Harian Kompas dan Kompas.com,” CoverAge: Journal of Strategic Communication, vol. 7, no. 2, 2017.
J. P. Tambusai, E. Efendi, A. Taufiqurrohman, T. Supriadi, E. Kuswananda, and K. P. Islam, “Teori Agenda Setting,” Jurnal Pendidikan Tambusai, vol. 7, no. 1, 2023.
E. L. Pambayun, One Stop Qualitative Research Methodology In Communication. Jakarta: Lentera Ilmu Cendekia, 2018.
A. Aryanti and H. Rusitawati, “Netralitas Media Massa Sebagai Impelemntasi Fungsi Edukasi Politik di Indonesia,” Jurnal Penelitian Politik, vol. 2, 2014.
DOI: http://dx.doi.org/10.30829/zero.v9i3.26837
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Publisher : Department of Mathematics Faculty of Science and Technology Universitas Islam Negeri Sumatera Utara Medan | |
✉️ Email: zero_journal@uinsu.ac.id 📱 WhatsApp:085270009767 (Admin Official) | |
| | | | |
