Determinants of Dengue Hemorrhagic Fever in Aceh: A Panel Regression Approach

Fitra Muliani, Fazrina Saumi, Amelia Amelia, Rizki Amalia

Abstract


Dengue Hemorrhagic Fever (DHF) exhibits substantial variation across districts and over time in Aceh Province, making it suitable for analysis within a panel data framework. This study models district-level DHF incidence using applied econometric techniques based on non-spatial panel data regression, employing a balanced panel dataset of 23 districts/cities observed from 2020 to 2022. The Common Effect Model (CEM), Fixed Effect Model (FEM), and Random Effect Model (REM) are estimated and formally compared using the Chow test, Hausman test, and Lagrange Multiplier test, with results consistently indicating that the Fixed Effect Model is the most appropriate specification due to the presence of unobserved, time-invariant district-specific effects. Diagnostic testing identifies heteroskedasticity in the error structure; therefore, the selected FEM is re-estimated using White cross-section robust standard errors to ensure reliable statistical inference. Empirical results show that population density is positively and statistically significantly associated with DHF cases, while the number of health workers is negatively and significantly associated, whereas rainfall, number of hospitals, sanitation coverage, and poverty level do not exhibit statistically significant effects in the final robust specification. The selected model explains approximately 86% of the within-district variation in DHF incidence, demonstrating the importance of appropriate model specification and robust variance estimation in panel data regression applied to epidemiological outcomes, while emphasizing that the estimated relationships represent statistical associations rather than causal effects.


Keywords


Dengue Fever;Factor Analysis

Full Text:

PDF

References


Irmaini, “Upaya pencegahan dan pengendalian demam berdarah dengue di Indonesia: keunggulan dan kendala,” in Proc. Konsep Mutakhir Tatalaksana Berbagai Persoalan Medis, 2015, pp. 356–367.

M. Z. Ndii, N. Anggriani, J. J. Messakh, and B. S. Djahi, “Estimating the reproduction number and designing integrated strategies against dengue,” Results in Physics, vol. 27, Art. no. 104473, 2021, doi: 10.1016/j.rinp.2021.104473.

N. Kholifah and R. Yudhastuti, “Risiko penularan demam berdarah dengue (DBD) di sekolah dasar di Kelurahan Putat Jaya, Surabaya,” Jurnal Ilmiah Kesehatan Media Husada, vol. 5, no. 2, pp. 95–106, 2016, doi: 10.33475/jikmh.v5i2.170.

I. G. W. K. Mahardika, M. Rismawan, and I. N. Adiana, “Hubungan pengetahuan ibu dengan perilaku pencegahan DBD pada anak usia sekolah di Desa Tegallinggah,” Jurnal Riset Kesehatan Nasional, vol. 7, no. 1, pp. 51–57, 2023, doi: 10.37294/jrkn.v7i1.473.

M. U. G. Kraemer et al., “Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus,” Nature Microbiology, vol. 4, no. 5, pp. 854–863, 2019, doi: 10.1038/s41564-019-0376-y.

Kementerian Kesehatan Republik Indonesia, Informasi Singkat Demam Berdarah Dengue (DBD) di Indonesia Tahun 2020. Jakarta, Indonesia: Kemenkes RI, 2021.

O. A. Boleng, K. B. Ginting, and A. Ariyanto, “Analisis regresi data panel untuk kasus demam berdarah dengue di Provinsi Nusa Tenggara Timur,” Jurnal Diferensial, vol. 4, no. 2, pp. 75–83, 2022, doi: 10.35508/jd.v4i2.8286.

Kementerian Kesehatan Republik Indonesia, Laporan Tahunan 2022: Demam Berdarah Dengue. Jakarta, Indonesia: Kemenkes RI, 2022.

Dinas Kesehatan Aceh, Profil Kesehatan Aceh 2022. Banda Aceh, Indonesia: Dinas Kesehatan Aceh, 2023.

C. Kurnia, “Faktor-faktor yang mempengaruhi kasus demam berdarah dengue (DBD) di Provinsi Jawa Barat menggunakan analisis regresi data panel,” Bachelor’s thesis, Dept. Statistics, Universitas Negeri Padang, Padang, Indonesia, 2022.

A. Winandar, Gunawan, and R. Wati, “Faktor-faktor yang berhubungan dengan kejadian demam berdarah dengue (DBD) di Gampong Mulia Kecamatan Kuta Alam Kota Banda Aceh Tahun 2022,” in Proc. Seminar Nasional Multidisiplin Ilmu, vol. 3, no. 1, pp. 296–308, 2022.

S. A. F. B. Mentari, “Faktor risiko demam berdarah di Indonesia,” Jurnal Manajemen Kesehatan Yayasan RS Dr. Soetomo, vol. 9, no. 1, pp. 22–29, 2023, doi: 10.29241/jmk.v9i1.1255.

Z. Ismah, T. B. Purnama, D. R. Wulandari, E. R. Sazkiah, and Y. K. Ashar, “Faktor risiko demam berdarah di negara tropis,” Aspirator: Journal of Vector-borne Disease Studies, vol. 13, no. 2, pp. 147–158, 2021, doi: 10.22435/asp.v13i2.4629.

J. Husni, I. Isfanda, and Y. Rahmayanti, “Studi kasus demam berdarah dengue (DBD) terhadap keberadaan vektor Aedes aegypti di Gampong Ateuk Pahlawan Kota Banda Aceh,” Sel: Jurnal Penelitian Kesehatan, vol. 5, no. 1, pp. 26–35, 2018, doi: 10.22435/sel.v5i1.1483.

R. N. Elvadianty, “Pemodelan jumlah kasus demam berdarah dengue di Provinsi Jawa Timur menggunakan regresi data panel,” Bachelor’s thesis, Dept. Statistics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia, 2017.

J. M. Wooldridge, Econometric Analysis of Cross-Section and Panel Data, 2nd ed. Cambridge, MA, USA: MIT Press, 2010.

B. H. Baltagi, Econometric Analysis of Panel Data, 5th ed. Chichester, U.K.: Wiley, 2013.

W. H. Greene, Econometric Analysis, 7th ed. Upper Saddle River, NJ, USA: Pearson, 2012.

D. M. Drukker, “Testing for serial correlation in linear panel-data models,” Stata Journal, vol. 3, no. 2, pp. 168–177, 2003.

M. Arellano, Panel Data Econometrics. Oxford, U.K.: Oxford University Press, 2003.

A. M. Jones, N. Rice, T. Bago d’Uva, and S. Balia, Applied Health Economics, 2nd ed. London, U.K.: Routledge, 2013.

M. Bhatt et al., “The global distribution and burden of dengue,” Nature, vol. 496, no. 7446, pp. 504–507, 2013, doi: 10.1038/nature12060.

B. E. Hansen, “Econometrics,” unpublished manuscript, University of Wisconsin–Madison, 2022. [Online]. Available: https://www.ssc.wisc.edu/~bhansen/econometrics/

S. Bhatt, J. P. Messina, K. Hampson, et al., “The impact of population density and health system capacity on dengue transmission dynamics,” PLoS Neglected Tropical Diseases, vol. 14, no. 9, Art. no. e0008718, 2020, doi: 10.1371/journal.pntd.0008718.

A. Gasparrini, B. Armstrong, and M. G. Kenward, “Distributed lag non-linear models in epidemiology: a review,” Statistical Methods in Medical Research, vol. 29, no. 5, pp. 1453–1470, 2020, doi: 10.1177/0962280219888380.

J. Islam and W. Hu, “Rapid human movement and dengue transmission in Bangladesh: a spatial and temporal analysis based on different policy measures of COVID-19 pandemic and Eid festival.” Infectious Diseases of Poverty, vol. 13, no. 1, Art. no. 99, 2024, doi: 10.1186/s40249-024-01267-4.

Y. Liu, M. Wang, N. Yu, W. Zhao, P. Wang, H. Zhang, W. Sun, and H. Lu, “Trends and insights in dengue virus research globally: a bibliometric analysis (1995–2023).” Journal of Translational Medicine, vol. 22, Art. no. 818, 2024, doi: 10.1186/s12967-024-05561-5.




DOI: http://dx.doi.org/10.30829/zero.v9i3.26784

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Publisher :
Department of Mathematics
Faculty of Science and Technology
Universitas Islam Negeri Sumatera Utara Medan
📱 WhatsApp:085270009767 (Admin Official)
SINTA 2 Google Scholar CrossRef Garuda DOAJ