Technical Assessment of Neuro-Symbolic AI for Cultural and Fractal Analysis of Batik Motifs

Rahmat Tullah, Lilis Stianingsih

Abstract


This study presents a structured literature review of Neuro-Symbolic Artificial Intelligence (NSAI) approaches for extracting cultural semantics and fractal features from Batik motifs. A structured multi-database screening (2015–2025) yielded 69 peer-reviewed studies, which were synthesized thematically. The review identifies three key findings: existing vision-based models generally lack explicit mechanisms for encoding intangible cultural rules; hybrid neural–symbolic approaches demonstrate improved interpretability and compositional reasoning; and fractal-based descriptors show promise for representing culturally grounded motif structures. Based on these findings, this study proposes a conceptual NSAI framework that combines symbolic knowledge representations with fractal feature modeling, without empirical validation at this stage. The synthesis highlights potential applications in motif recognition, generative motif modeling, and computer-assisted cultural heritage preservation. Overall, NSAI offers a feasible and explainable conceptual framework for modeling Batik’s intangible cultural knowledge. 


Keywords


Neuro-Symbolic AI; Computational Semiotics; Fractal Dimension; Computer Vision; Batik Patterns; Digital Heritage; Explainable AI (XAI); Systematic Literature Review

Full Text:

PDF

References


A. Akbar, M. Perdana, M. Fajar, and A. Muis Mappalotteng, “Enhancing Batik Classification Leveraging CNN Models and Transfer Learning,” International Journal On Informatics Visualization, vol. 9, no. 3, pp. 1033–1040, 2025.

I. B. K. Manuaba and V. J. Basiroen, “Comparison Study Of Image Augmentation On Modified CNN Architecture For Indonesian Lasem-Batik’s Motifs,” ICIC Express Letters, vol. 17, no. 4, pp. 409–417, Apr. 2023, doi: https://doi.org/10.24507/icicel.17.04.409.

S. P. Nan Quddus, A. Cahyana, A. M. Falah, and M. R. Nagara, “Transformasi Visual dan Makna Simbolik Motif Batik Parang Rusak dalam Konteks Budaya Modern,” Serat Rupa: Journal of Design, vol. 9, no. 2, pp. 205–216, Jul. 2025, doi: 10.28932/srjd.v9i2.11994.

M. A. El Youssr, M. El Hamlaoui, and Y. Laghouaouta, “From Black Box to Glass Box: A Model-Driven Engineering Approach for Explainable AI,” in Lecture Notes in Networks and Systems, vol. 1313 LNNS, Springer Science and Business Media Deutschland GmbH, 2025, pp. 472–483. doi: https://doi.org/10.1007/978-3-031-94623-3_41.

A. Z. Khoirunisa and Muhajirin, “Semiotika Batik Motif Weton Indonesia Karya Omah Kreatif Dongaji dengan Pendekatan Charles S.Peirce,” Sungging : Jurnal Seni Rupa, Kriya, Desain dan Pembelajarannya, vol. 1, no. 2, pp. 147–158, 2022.

O. Ida Ayu Made Wedasuwari and I. Wayan Rasna, “Analisis Semiotika Puisi Pesona Batik Karya Uswatun Khasanah sebagai Pendekatan Pemahaman Makna,” Media Bina Ilmiah, vol. 15, no. 3, pp. 4163–4168, Oct. 2020, [Online]. Available: http://ejurnal.binawakya.or.id/index.php/MBI

T. Chandrasekaran, S. Ramisetty, and M. R. Pulicharla, “Neurosymbolic AI: Bridging neural networks and symbolic reasoning,” World Journal of Advanced Research and Reviews, vol. 25, no. 1, pp. 2351–2373, Jan. 2025, doi: 10.30574/wjarr.2025.25.1.0287.

P. Tugwell and D. Tovey, “PRISMA 2020,” Jun. 01, 2021, Elsevier Inc. doi: 10.1016/j.jclinepi.2021.04.008.

R. Azhar, D. Tuwohingide, D. Kamudi, Sarimuddin, and N. Suciati, “Batik Image Classification Using SIFT Feature Extraction, Bag of Features and Support Vector Machine,” in Procedia Computer Science, Elsevier, 2015, pp. 24–30. doi: 10.1016/j.procs.2015.12.101.

D. Wijaya and A. R. Widiarti, “Batik classification using KNN algorithm and GLCM features extraction,” in E3S Web of Conferences, EDP Sciences, Jan. 2024. doi: 10.1051/e3sconf/202447502012.

A. A. Kasim, R. Wardoyo, and A. Harjoko, “Feature extraction methods for batik pattern recognition: A review,” in AIP Conference Proceedings, American Institute of Physics Inc., Jul. 2016. doi: 10.1063/1.4958503.

Q. N. Hong et al., “Improving the content validity of the mixed methods appraisal tool: a modified e-Delphi study,” J Clin Epidemiol, vol. 111, pp. 49-59.e1, Jul. 2019, doi: 10.1016/j.jclinepi.2019.03.008.

S. Sun, “Meta-analysis of Cohen’s kappa,” Health Serv Outcomes Res Methodol, vol. 11, no. 3–4, pp. 145–163, Dec. 2011, doi: 10.1007/s10742-011-0077-3.

A. Gomaa and M. Feld, “Towards Adaptive User-centered Neuro-symbolic Learning for Multimodal Interaction with Autonomous Systems,” in ACM International Conference Proceeding Series, Association for Computing Machinery, Oct. 2023, pp. 689–694. doi: 10.1145/3577190.3616121.

S. Maziyah, Mahirta, and S. Atmosudiro, “Makna Simbolis Batik pada Masyarakat Jawa Kuna,” Paramita, vol. 26, no. 1, pp. 23–32, 2016.

M. H. S. Ar-Rasyid and P. M. Lestari, “Motif Batik Ambarawa (Kajian Semiotika),” Kawruh: Journal of Language Education, Literature and Local Culture, vol. 6, no. 1, pp. 1–10, Apr. 2024, doi: 10.32585/kawruh.v6i1.5046.

F. Abdullah, S. B. Basar, A. M. Adnan, J. Awang, R. Mat Nashir, and B. T. Wardoyo, “Exploring semiotic visual of batik stamp motif in Malaysia and Indonesia,” International and Interdisciplinary Conference on Arts Creation and Studies, vol. 9, pp. 1–9, 2024, doi: 10.33153/iicacs.v9i1.247.

G. Tian, Q. Yuan, T. Hu, and Y. Shi, “Auto-generation system based on fractal geometry for batik pattern design,” Applied Sciences (Switzerland), vol. 9, no. 11, Jun. 2019, doi: 10.3390/app9112383.

S. S. F. Ardyani and C. A. Sari, “A Web-Based for Demak Batik Classification Using VGG16 Convolutional Neural Network,” Advance Sustainable Science, Engineering and Technology, vol. 6, no. 4, pp. 0240406-01-0240406–09, Aug. 2024, doi: 10.26877/asset.v6i4.771.

A. Chusnyriani Sani Zulkarnaen et al., “Application of Convolutional Neural Network Method with MobileNet V1 and ResNet-152 V2 Architecture in Batik Motif Classification,” in International Conference on Broadband and Wireless Computing, Communication and Applications, Springer Nature Switzerland., 2024, pp. 57–68.

M. Maree, “Quantifying Relational Exploration in Cultural Heritage Knowledge Graphs with LLMs: A Neuro-Symbolic Approach for Enhanced Knowledge Discovery,” Data (Basel), vol. 10, no. 4, Apr. 2025, doi: 10.3390/data10040052.

P. Ardhianto, Y. P. Santosa, and G. Anandhita, “Enhancing the Traditional Batik Design Practices: An Approach to Batik Motif Design Using Artificial Intelligence,” vol. 52, no. 2, pp. 317–324, Feb. 2025.

Ş. Öztürk and B. Akdemir, “Application of Feature Extraction and Classification Methods for Histopathological Image using GLCM, LBP, LBGLCM, GLRLM and SFTA,” in Procedia Computer Science, Elsevier B.V., 2018, pp. 40–46. doi: 10.1016/j.procs.2018.05.057.

Husnia and Nur Wiji Sholikin, “Etnomatematika pada Batik Manggur Kota Probolinggo,” Kognitif: Jurnal Riset HOTS Pendidikan Matematika, vol. 5, no. 1, Mar. 2025, doi: 10.51574/kognitif.v5i1.2693.

A. W. Bustan, M. Salmin, and T. Talib, “Eksplorasi Etnomatematika terhadap Transformasi Geometri pada Batik Maléfo,” Jurnal Pendidikan Matematika (Jupitek), vol. 4, no. 2, pp. 87–94, Jan. 2022, doi: 10.30598/jupitekvol4iss2pp87-94.

Ş. Öztürk and B. Akdemir, “Application of Feature Extraction and Classification Methods for Histopathological Image using GLCM, LBP, LBGLCM, GLRLM and SFTA,” Procedia Comput Sci, vol. 132, pp. 40–46, 2018, doi: 10.1016/j.procs.2018.05.057.

D. Wijaya and A. R. Widiarti, “Batik classification using KNN algorithm and GLCM features extraction,” E3S Web of Conferences, vol. 475, p. 02012, Jan. 2024, doi: 10.1051/e3sconf/202447502012.

I. Donadello, L. Serafini, and A. d’Avila Garcez, “Logic Tensor Networks for Semantic Image Interpretation,” ArXiv, May 2017, [Online]. Available: http://arxiv.org/abs/1705.08968

A. Halnaut, R. Giot, R. Bourqui, and D. Auber, “Samples Classification Analysis Across DNN Layers with Fractal Curves,” in in ICPR 2020’s Workshop Explainable Deep Learning for AI, ICPR, 2021. [Online]. Available: https://hal.science/hal-03111634v1

S. Shivadekar, Artificial Intelligence for Cognitive Systems: Deep Learning, Neuro- symbolic Integration, and Human-Centric Intelligence. Deep Science Publishing, 2025. doi: 10.70593/978-93-7185-611-9.

M. Maree, “Quantifying Relational Exploration in Cultural Heritage Knowledge Graphs with LLMs: A Neuro-Symbolic Approach for Enhanced Knowledge Discovery,” Data (Basel), vol. 10, no. 4, p. 52, Apr. 2025, doi: 10.3390/data10040052.

D. Amalia, A. Rosdiana, N. Al Azizi, A. Wulandari, and U. Islam Nahdlatul Ulama Jepara, “Semiotika Batik Jepara sebagai Bentuk Identitas Budaya Lokal Masyarakat Jepara,” ENTITA: Jurnal Pendidikan Ilmu Pengetahuan Sosial dan Ilmu-Ilmu Sosial, vol. 6, no. 1, 2024, doi: 10.19105/ejpis.v5i2.12169.

M. H. S. Ar-Rasyid and P. M. Lestari, “Motif Batik Ambarawa: Kajian Semiotika,” Kawruh: Journal of Language Education, Literature and Local Culture, vol. 6, no. 1, pp. 1–10, Apr. 2024, doi: 10.32585/kawruh.v6i1.5046.

S. Gondi, D. Aggarwal, and S. Bansal, “Comparative Analysis of NSAI,” Universal Threats in Expert Applications and Solutions: Proceedings of 4th UNI-TEAS 2025, Volume 1, vol. 1, p. 25, 2025.




DOI: http://dx.doi.org/10.30829/zero.v9i3.26781

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Publisher :
Department of Mathematics
Faculty of Science and Technology
Universitas Islam Negeri Sumatera Utara Medan
📱 WhatsApp:085270009767 (Admin Official)
SINTA 2 Google Scholar CrossRef Garuda DOAJ