Modeling and Forecasting Volatility through EGARCH-X and EGARCH-CJ Models

Didit Budi Nugroho, Benita Dwitya Putri, Bambang Susanto

Abstract


This study compares the performance of EGARCH-X and EGARCH-CJ models in forecasting financial market volatility using daily TOPIX data (2004–2011). Model parameters were estimated using an efficient Bayesian MCMC framework. The results indicate that the EGARCH-CJ model, which decomposes volatility into continuous and jump components, provides a superior in-sample fit. More importantly, in out-of-sample forecasting, the EGARCH-CJ model demonstrates significantly better accuracy for medium- and long-term horizons (e.g., MSE reductions up to 30% at the 5-day horizon, with significant Diebold-Mariano statistics). In contrast, the standard EGARCH model remains more effective for short-term forecasts. These findings underscore the importance of explicitly modeling jump dynamics for medium-term risk management in the Japanese stock market, offering valuable insights for financial modelers and risk managers.


Keywords


Adaptive Random Walk Metropolis; Continuous and Jump; EGARCH; Realized Volatility

Full Text:

PDF

References


L. Muguto and P. F. Muzindutsi, “A Comparative Analysis of the Nature of Stock Return Volatility in BRICS and G7 Markets,” J. Risk. Financ. Manag., vol. 15, no. 2, p. 85, 2022. [Online]. Available: https://doi.org/10.3390/jrfm15020085

V. N. T. Thuy and D. T. T. Thuy, “The Impact of exchange rate volatility on exports in Vietnam: A bounds testing approach,” J. Risk. Financ. Manag., vol. 12, no. 1, p. 6, 2019. [Online]. Available: https://doi.org/10.3390/jrfm12010006

D. Rakshit, R. K. Paul, M. Yeasin, W. Emam, Y. Tashkandy, and C. Chesneau, “Modeling asymmetric volatility: A news impact curve approach,” Math., vol. 11, no. 13, p. 2793, 2023. [Online]. Available: https://doi.org/10.3390/MATH11132793

P. Duttilo, S. A. Gattone, and B. Iannone, “Mixtures of generalized normal distributions and EGARCH models to analyse returns and volatility of ESG and traditional investments,” AStA Adv. Stat. Anal., vol. 108, no. 4, pp. 755–775, 2024. [Online]. Available: https://doi.org/10.1007/S10182-023-00487-7/TABLES/9

F. Aliyev, R. Ajayi, and N. Gasim, “Modelling asymmetric market volatility with univariate GARCH models: Evidence from Nasdaq-100,” J. Econ. Asymmetries, vol. 22, p. e00167, 2020. [Online]. Available: https://doi.org/10.1016/J.JECA.2020.E00167

O. B. Akgun and E. Gulay, “Dynamics in realized volatility forecasting: Evaluating GARCH models and deep learning algorithms across parameter variations,” Comput. Econ., vol. 65, no. 6, pp. 3971–4013, 2025. [Online]. Available: https://doi.org/10.1007/S10614-024-10694-2/FIGURES/19

M. Matei, X. Rovira, and N. Agell, “Bivariate volatility modeling with high-frequency data,” Econom., vol. 7, no. 3, p. 41, 2019. [Online]. Available: https://doi.org/10.3390/econometrics7030041

D. B. Nugroho, J. Wijaya, and A. Setiawan, “Modeling of returns volatility through EGARCH model using high-frequency data,” J. Appl. Probab. Stat., vol. 18, no. 2, pp. 55–73, 2023. [Online]. Available: http://japs.isoss.net/porder/form.php

H. Zhang and Q. Lan, “GARCH-type model with continuous and jump variation for stock volatility and its empirical study in China,” Math. Probl. Eng., vol. 2014, 2014. [Online]. Available: https://doi.org/10.1155/2014/386721

X. Ding, R. Haron, and A. Hasan, “The influence of Basel III on Islamic bank risk,” J. Islam. Monet. Econ. Financ., vol. 9, no. 1, pp. 167–198, 2023. [Online]. Available: https://doi.org/10.21098/JIMF.V9I1.1590

V. C. Kemezang, A. I. Djou, and I. G. Keubeng, “Measuring market risk with GARCH models under Basel III: selection and application to German firms,” SN Bus. Econ., vol. 4, no. 10, pp. 1–30, 2024. [Online]. Available: https://doi.org/10.1007/S43546-024-00699-2

Y. Cheng, “Monte Carlo-based VaR estimation and backtesting under Basel III,” Risks, vol. 13, no. 8, 2025. [Online]. Available: https://doi.org/10.3390/RISKS13080146

M. Caporin, “The role of jumps in realized volatility modeling and forecasting,” J. Financ. Econom., vol. 21, no. 4, pp. 1143–1168, 2023. [Online]. Available: https://doi.org/10.1093/JJFINEC/NBAB030

T. Takaishi, “Time evolution of market efficiency and multifractality of the Japanese stock market,” J. Risk Financ. Manag., vol. 15, no. 1, 2022. [Online]. Available: https://doi.org/10.3390/jrfm15010031

D. Dimitriou, T. Simos, A. Tsioutsios, and C. Zopounidis, “Volatility discovery in G-7 stock markets based on evidence from realized kernels,” Financ. Res. Open, vol. 1, no. 4, p. 100047, 2025. [Online]. Available: https://doi.org/10.1016/J.FINR.2025.100047

O. E. Barndorff-Nielsen, P. Hansen, A. Lunde, and N. Shephard, “Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise,” Econometrica, vol. 76, no. 6, pp. 1481–1536, 2008. [Online]. Available: https://doi.org/10.3982/ECTA6495

F. Cipollini, G. M. Gallo, and E. Otranto, “Realized volatility forecasting: Robustness to measurement errors,” Int. J. Forecast., vol. 37, no. 1, pp. 44–57, 2021. [Online]. Available: https://doi.org/10.1016/J.IJFORECAST.2020.02.009

Z. M. Li and O. Linton, “Robust estimation of integrated and spot volatility,” J. Econom., p. 105614, 2023. [Online]. Available: https://doi.org/10.1016/J.JECONOM.2023.105614

H. Dette, V. Golosnoy, and J. Kellermann, “The effect of intraday periodicity on realized volatility measures,” Metrika, vol. 86, no. 3, pp. 315–342, 2023. [Online]. Available: https://doi.org/10.1007/S00184-022-00875-0/TABLES/3

M. Takahashi, T. Watanabe, and Y. Omori, “Forecasting daily volatility of stock price index using daily returns and realized volatility,” Econom. Stat., vol. 32, pp. 34–56, 2024. [Online]. Available: https://doi.org/10.1016/J.ECOSTA.2021.08.002

S. Degiannakis, G. Filis, T. Klein, and T. Walther, “Forecasting realized volatility of agricultural commodities,” Int. J. Forecast., vol. 38, no. 1, pp. 74–96, Jan. 2022. [Online]. Available: https://doi.org/10.1016/J.IJFORECAST.2019.08.011

E. Bouri, K. Gkillas, R. Gupta, and C. Kyei, “Monetary policy uncertainty and jumps in advanced equity markets,” J. Risk, vol. 23, no. 1, pp. 101–112, 2020, Accessed: Oct. 30, 2025. [Online]. Available: https://repository.up.ac.za/items/dc107eaf-90c6-4678-9dce-95c68058a5f6

D. B. Nugroho, T. Mahatma, and Y. Pratomo, “Applying the non-linear transformation families to the lagged-variance of EGARCH and GJR models,” IAENG International Journal of Applied Mathematics, vol. 51, no. 4, pp. 908–919, 2021, [Online]. Available: https://www.iaeng.org/IJAM/issues_v51/issue_4/IJAM_51_4_12.pdf

D. B. Nugroho, B. A. A. Wicaksono, and L. Larwuy, “GARCH-X(1,1) model allowing a non-linear function of the variance to follow an AR(1) process,” Commun. Stat. Appl. Methods, vol. 30, no. 2, pp. 163–178, 2023. [Online]. Available: https://doi.org/10.29220/CSAM.2023.30.2.163

E. Raimundez, M. Fedders, and J. Hasenauer, “Posterior marginalization accelerates Bayesian inference for dynamical models of biological processes,” iScience, vol. 26, no. 11, p. 108083, 2023. [Online]. Available: https://doi.org/10.1016/J.ISCI.2023.108083

C. C. Monnahan, “Toward good practices for Bayesian data-rich fisheries stock assessments using a modern statistical workflow,” Fish Res, vol. 275, p. 107024, 2024, doi: 10.1016/J.FISHRES.2024.107024.

V. Roy, “Convergence diagnostics for Markov chain Monte Carlo,” Annu. Rev. Stat. Appl., vol. 7, pp. 387–412, 2020. [Online]. Available: https://doi.org/10.1146/annurev-statistics-031219-041300

M. Villani, M. Quiroz, R. Kohn, and R. Salomone, “Spectral subsampling MCMC for stationary multivariate time series with applications to vector ARTFIMA processes,” Econom. Stat., vol. 32, pp. 98–121, 2024. [Online]. Available: https://doi.org/10.1016/J.ECOSTA.2022.10.001

M. Faldzinski, P. Fiszeder, and P. Molnar, “Improving volatility forecasts: Evidence from range-based models,” N. Am. J. Econ. Financ., vol. 69, 2024. [Online]. Available: https://doi.org/10.1016/j.najef.2023.102019

Y. Zhang, Y. Wang, and F. Ma, “Forecasting US stock market volatility: How to use international volatility information,” J. Forecast, vol. 40, no. 5, pp. 733–768, 2021. [Online]. Available: https://doi.org/10.1002/FOR.2737;WGROUP:STRING:PUBLICATION

T. Trimono and D. A. Maruddani, “Comparison between alue at risk and adjusted expected shortfall: A numerical analysis,” BAREKENG: J. Math. Appl., vol. 17, no. 3, pp. 1347–1358, 2023. [Online]. Available: https://doi.org/10.30598/barekengvol17iss3pp1347-1358

S. Zamani, A. Chaghazardi, and H. Arian, “Pathwise grid valuation of fixed-income portfolios with applications to risk management,” Heliyon, vol. 8, no. 7, p. e09880, 2022. [Online]. Available: https://doi.org/10.1016/J.HELIYON.2022.E09880

A. Vehtarh, A. Gelman, D. Simpson, B. Carpenter, and P. C. Burkner, “Rank-normalization, folding, and localization: An improved Rˆ for assessing convergence of MCMC (with discussion),” Bayesian Anal., vol. 16, no. 2, pp. 667–718, 2021. [Online]. Available: https://doi.org/10.1214/20-BA1221

S. Zitzmann, S. Weirich, and M. Hecht, “Using the effective sample size as the stopping criterion in Markov Chain Monte Carlo with the Bayes module in Mplus,” Psych., vol. 3, no. 3, pp. 336–347, 2021. [Online]. Available: https://doi.org/10.3390/PSYCH3030025

J. J. Dziak, D. L. Coffman, S. T. Lanza, R. Li, and L. S. Jermiin, “Sensitivity and specificity of information criteria,” Brief. Bioinform., vol. 21, no. 2, pp. 553–565, 2020. [Online]. Available: https://doi.org/10.1093/BIB/BBZ016

R. Hizmeri, M. Izzeldin, and G. Urga, “Identifying the underlying components of high-frequency data: Pure vs jump diffusion processes,” J. Empir. Finance., vol. 81, p. 101594, 2025. [Online]. Available: https://doi.org/10.1016/J.JEMPFIN.2025.101594

T. Leung and T. Zhao, “Multiscale volatility analysis for noisy high-frequency prices,” Risks, vol. 11, no. 7, p. 117, 2023. [Online]. Available: https://doi.org/10.3390/RISKS11070117

P. A. Mykland and L. Zhang, “Between data cleaning and inference: Pre-averaging and robust estimators of the efficient price,” J. Econom., vol. 194, no. 2, pp. 242–262, 2016[Online]. Available: https://doi.org/10.1016/J.JECONOM.2016.05.005

C. W. S. Chen, H. Y. Hsu, and T. Watanabe, “Tail risk forecasting of realized volatility CAViaR models,” Financ. Res. Lett., vol. 51, 2023. [Online]. Available: https://doi.org/10.1016/j.frl.2022.103326

M. Caporin, T. Di Fonzo, and D. Girolimetto, “Exploiting intraday decompositions in realized volatility forecasting: A forecast reconciliation approach,” J. Financ. Econom., vol. 22, no. 5, pp. 1759–1784, 2024. [Online]. Available: https://doi.org/10.1093/JJFINEC/NBAE014

M. Alfeus, J. Harvey, and P. Maphatsoe, “Improving realised volatility forecast for emerging markets,” J. Econ. Financ., vol. 49, no. 1, pp. 299–342, 2025. [Online]. Available: https://doi.org/10.1007/S12197-024-09701-X/FIGURES/9




DOI: http://dx.doi.org/10.30829/zero.v9i3.26532

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Publisher :
Department of Mathematics
Faculty of Science and Technology
Universitas Islam Negeri Sumatera Utara Medan
📱 WhatsApp:085270009767 (Admin Official)
SINTA 2 Google Scholar CrossRef Garuda DOAJ