Uncertainty-Aware Kalman Filtering via Intrusive Polynomial Chaos for Disturbance Estimation

Heri Purnawan, Abdur Rohman Wakhid, Qori Afiata Fiddina, Belgis Ainatul Iza, Tri Muhamad Sanusi, Sari Cahyaningtias

Abstract


Robust control under parameter uncertainty requires reliable disturbance estimation. This paper proposes an uncertainty-aware method, namely Intrusive Polynomial Chaos-based Kalman Filter (IPC-KF) for systems with probabilistic parameters and measurement noise. The method is evaluated through two numerical case studies and compared with a nominal Kalman filter (KF). Results from 100 realizations, assessed using RMSE and mean variance, show that the IPC-KF achieves estimation accuracy comparable to the nominal KF. For the spring–mass–damper system, the RMSE difference is below , with both methods yielding the same mean variance of . For the F-16 aircraft model, identical RMSE values and a mean variance of  are obtained. While IPC-KF captures parameter uncertainty via polynomial chaos, augmenting the state with disturbances does not necessarily improve estimation accuracy. Further studies are needed to assess uncertainty bounds and robustness.


Keywords


Disturbance Estimation; Intrusive Polynomial Chaos; Kalman Filter; Measurement Noise; Parameter Uncertainty

Full Text:

PDF

References


H. Yang, F. Deng, Y. He, D. Jiao, and Z. Han, “Robust nonlinear model predictive control for reference tracking of dynamic positioning ships based on nonlinear disturbance observer,” Ocean Eng., vol. 215, p. 107885, 2020, doi: 10.1016/j.oceaneng.2020.107885.

S. Liu, L. Wang, and X. V. Wang, “Sensorless force estimation for industrial robots using disturbance observer and neural learning of friction approximation,” Robot. Comput. Integr. Manuf., vol. 71, p. 102168, 2021, doi: 10.1016/j.rcim.2021.102168.

P. Ye, Y. Guan, S. Mao, P. Wang, and H. Zhu, “Contact Force Estimation for Robotic Manipulators based on Disturbance Kalman Filter,” in 2023 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2023, pp. 1–6. doi: 10.1109/ROBIO58561.2023.10354780.

J. Fisher and R. Bhattacharya, “Linear quadratic regulation of systems with stochastic parameter uncertainties,” Automatica, vol. 45, no. 12, pp. 2831–2841, 2009, doi: 10.1016/j.automatica.2009.10.001.

E. Acar, G. Bayrak, Y. Jung, I. Lee, P. Ramu, and S. S. Ravichandran, “Modeling, analysis, and optimization under uncertainties: a review,” Struct. Multidiscip. Optim., vol. 64, no. 5, pp. 2909–2945, 2021, doi: 10.1007/s00158-021-03026-7.

A. Herbut and W. Brzakala, “Polynomial chaos expansion vs. Monte Carlo simulation in a stochastic analysis of wave propagation,” Wave Motion, vol. 130, p. 103390, 2024, doi: 10.1016/j.wavemoti.2024.103390.

J. Son and Y. Du, “An efficient polynomial chaos expansion method for uncertainty quantification in dynamic systems,” Appl. Mech., vol. 2, no. 3, pp. 460–481, 2021, doi: 10.3390/applmech2030026.

B. Enderle, B. Rauch, F. Grimm, G. Eckel, and M. Aigner, “Non-intrusive uncertainty quantification in the simulation of turbulent spray combustion using polynomial chaos expansion: A case study,” Combust. Flame, vol. 213, pp. 26–38, 2020, doi: 10.1016/j.combustflame.2019.11.021.

A. Koirala, T. Van Acker, R. D’hulst, and D. Van Hertem, “Uncertainty quantification in low voltage distribution grids: Comparing Monte Carlo and general polynomial chaos approaches,” Sustain. Energy, Grids Networks, vol. 31, p. 100763, 2022, doi: 10.1016/j.segan.2022.100763.

J. A. Paulson, S. Streif, R. Findeisen, R. D. Braatz, and A. Mesbah, “Fast stochastic model predictive control of end-to-end continuous pharmaceutical manufacturing,” in Computer Aided Chemical Engineering, vol. 41, Elsevier, 2018, pp. 353–378. doi: 10.1016/B978-0-444-63963-9.00014-2.

H. Purnawan, T. Asfihani, S. Kim, and S. Subchan, “Model Predictive Control Design under Stochastic Parametric Uncertainties Based on Polynomial Chaos Expansions for F-16 Aircraft,” J. Robot. Control, vol. 5, no. 3, pp. 723–732, 2024, doi: 10.18196/jrc.v5i3.21366.

H. Purnawan, T. Asfihani, S. Kim, and S. Subchan, “Stochastic model predictive control for flight path angle tracking of f-16 aircraft based on polynomial chaos,” in 2024 International Seminar on Intelligent Technology and Its Applications (ISITIA), 2024, pp. 599–604. doi: 10.1109/ISITIA63062.2024.10668152.

F. Zhang et al., “Joint estimation of vehicle state and parameter based on maximum correntropy adaptive unscented Kalman filter,” Int. J. Automot. Technol., vol. 24, no. 6, pp. 1553–1566, 2023, doi: 10.1007/s12239-023-0125-3.

R. Bhusal and K. Subbarao, “Generalized polynomial chaos-based ensemble Kalman filtering for orbit estimation,” in 2021 American Control Conference (ACC), 2021, pp. 4290–4295. doi: 10.23919/ACC50511.2021.9482961.

A. Kaldmäe and Ü. Kotta, “A brief tutorial overview of disturbance observers for nonlinear systems: application to flatness-based control,” Proc. Est. Acad. Sci., vol. 69, no. 1, pp. 57–73, 2020, doi: 10.3176/proc.2020.1.07.

H. Purnawan, T. Asfihani, and S. Subchan, “Disturbance observer model predictive control with application to UAV pitch angle control,” in AIP Conference Proceedings, 2022. doi: 10.1063/5.0116990.

S. Subchan, L. R. Amalia, T. Asfihani, and H. Purnawan, “Reference Tracking of Quadrotor Using Modified Nonlinear Model Predictive Control Based on Nonlinear Disturbance Observer,” in International Conference on Mathematics: Pure, Applied and Computation, 2023, pp. 87–104. doi: 10.1007/978-981-97-2136-8_8.

B. A. Iza, Q. A. Fiddina, H. N. Fadhilah, D. K. Arif, and Mardlijah, “Automatic Guided Vehicle (AGV) tracking model estimation with Ensemble Kalman Filter,” in AIP Conference Proceedings, 2022. doi: 10.1063/5.0118817.

H. Purnawan, “Desain Disturbance Observer-Based Stochastic Model Predictive Control Untuk Sistem Dengan Ketidakpastian Parameter Dan Gangguan,” Institut Teknologi Sepuluh Nopember, 2024.

K. Kumar, R. K. Tiwari, S. Bhaumik, and P. Date, “Polynomial chaos Kalman filter for target tracking applications,” IET Radar, Sonar & Navig., vol. 17, no. 2, pp. 247–260, 2023, doi: 10.1049/rsn2.12338.

L. Zhang, X. Liu, G. Zong, and W. Wang, “Kalman filter-based SMC for systems with noise and disturbances: applications to magnetic levitation system,” Int. J. Syst. Sci., pp. 1–13, 2025, doi: 10.1080/00207721.2025.2468364.

X. Lin, W. Li, S. Li, J. Ye, C. Yao, and Z. He, “Combined adaptive robust Kalman filter algorithm,” Meas. Sci. Technol., vol. 32, no. 7, p. 75015, 2021, doi: 10.1088/1361-6501/abf57c.

P. Listov, J. Schwarz, and C. N. Jones, “Stochastic optimal control for autonomous driving applications via polynomial chaos expansions,” Optim. Control Appl. Methods, vol. 45, no. 1, pp. 3–28, 2024, doi: 10.1002/oca.3047.

D. Sivaraman, S. Ongwattanakul, B. M. Pillai, and J. Suthakorn, “Adaptive polynomial Kalman filter for nonlinear state estimation in modified AR time series with fixed coefficients,” IET Control Theory & Appl., vol. 18, no. 14, pp. 1806–1824, 2024, doi: 10.1049/cth2.12727.

S. Kim, V. M. Deshpande, and R. Bhattacharya, “Robust Kalman Filtering with Probabilistic Uncertainty in System Parameters,” IEEE Control Syst. Lett., vol. 5, no. 1, pp. 295–300, 2021, doi: 10.1109/LCSYS.2020.3001490.

N. Wiener, “The homogeneous chaos,” Am. J. Math., vol. 60, no. 4, pp. 897–936, 1938, doi: 10.2307/2371268.

R. H. Cameron and W. T. Martin, “The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals,” Ann. Math., pp. 385–392, 1947, doi: 10.2307/1969178.

D. Xiu and G. E. Karniadakis, “The Wiener--Askey polynomial chaos for stochastic differential equations,” SIAM J. Sci. Comput., vol. 24, no. 2, pp. 619–644, 2002, doi: 10.1137/S1064827501387826.

J. A. Paulson, A. Mesbah, S. Streif, R. Findeisen, and R. D. Braatz, “Fast stochastic model predictive control of high-dimensional systems,” in 53rd IEEE Conference on decision and Control, 2014, pp. 2802–2809. doi: 10.1109/CDC.2014.7039819.

J. A. Paulson and A. Mesbah, “An efficient method for stochastic optimal control with joint chance constraints for nonlinear systems,” Int. J. Robust Nonlinear Control, vol. 29, no. 15, pp. 5017–5037, 2019, doi: 10.1002/rnc.3999.

B. Lu and F. Wu, “Probabilistic robust control design for an f-16 aircraft,” in AIAA Guidance, Navigation, and Control Conference and Exhibit, 2005, p. 6080. doi: 10.2514/6.2005-6080.




DOI: http://dx.doi.org/10.30829/zero.v9i3.26488

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Publisher :
Department of Mathematics
Faculty of Science and Technology
Universitas Islam Negeri Sumatera Utara Medan
📱 WhatsApp:085270009767 (Admin Official)
SINTA 2 Google Scholar CrossRef Garuda DOAJ