Regional Clustering of CO₂ Emissions in Indonesia for Emission Policy Targeting
Abstract
Regional disparities in Indonesia’s CO2 emissions highlight the need for emissions policies tailored to regional conditions rather than uniform national policies. This study addresses this issue by applying clustering analysis to identify emission patterns across five sectors: Energy, IPPU, Agriculture, Forestry, and Waste. K-Medoids and Fuzzy K-Medoids were selected for their robustness to outliers and their ability to capture complex, cross-sectoral emission characteristics more effectively than conventional methods. The results show that the K-Medoids method produced the most reliable clustering, with a Silhouette Coefficient of 0.5981 and a Dunn Index of 0.0310, indicating a moderate cluster structure. Two clusters were identified: provinces with low emissions dominated by the forestry sector, and provinces with high emissions driven by non-forestry activities. These cluster-based patterns provide a practical basis for directing emission policy interventions according to regional characteristics.
Keywords
References
“Carbon Dioxide - Earth Indicator,” National Aeronautics and Space Administration (NASA). Accessed: Oct. 21, 2025. [Online]. Available: https://science.nasa.gov/earth/explore/earth-indicators/carbon-dioxide/
“Greenhouse gas concentrations surge again to new record in 2023,” World Meteorogical Organization. Accessed: Oct. 21, 2025. [Online]. Available: https://wmo.int/news/media-centre/greenhouse-gas-concentrations-surge-again-new-record-2023
L. J. R. Nunes, “The Rising Threat of Atmospheric CO2: A Review on the Causes, Impacts, and Mitigation Strategies,” Environ. - MDPI, vol. 10, no. 4, 2023, doi: 10.3390/environments10040066.
N. V. Lobus, M. A. Knyazeva, A. F. Popova, and M. S. Kulikovskiy, “Carbon Footprint Reduction and Climate Change Mitigation :,” J. Carbon Res., vol. 9, no. 4, p. 120, 2023, doi: 10.3390/c9040120.
H. Ritchie and M. Roser, “CO₂ emissions,” Our World in Data. Accessed: Oct. 21, 2025. [Online]. Available: https://ourworldindata.org/co2-emissions
“Third Biennial Update Report Under the United Nations Framework Convention on Climate Change,” Minist. Environ. For., 2021.
I. A. Rum, A. Tukker, R. Hoekstra, A. de Koning, and A. A. Yusuf, “Exploring carbon footprints and carbon intensities of Indonesian provinces in a domestic and global context,” Front. Environ. Sci., vol. 12, no. October, pp. 1–15, 2024, doi: 10.3389/fenvs.2024.1325089.
T. R. Noviandy et al., “Environmental and Economic Clustering of Indonesian Provinces: Insights from K-Means Analysis,” Leuser J. Environ. Stud., vol. 2, no. 1, pp. 41–51, 2024, doi: 10.60084/ljes.v2i1.181.
Z. Zaijie and Y. Weifang, “Agricultural Carbon Emissions in Hubei Province and County-level Carbon Emission Research,” J. Yunnan Agric. Univ. Sci., vol. 17, no. 2, pp. 134–140, 2023, doi: 10.12371/j.ynau(s).202209104.
A. T. A. A. Siahaan, “Clustering Indonesian Provinces Based on Per Capita Energy Consumption Using the K-Means Algorithm,” IJICS (International J. Informatics Comput. Sci., vol. 9, no. 1, pp. 1–6, 2025, doi: 10.30865/ijics.v9i1.8875.
William, L. Bayuaji, N. J. Perdana, and T. Handhayani, “Mapping Indonesia’s Regions Based on Carbon Emissions Using the K-Means Algorithm,” ICoCSETI 2025 - Int. Conf. Comput. Sci. Eng. Technol. Innov. Proceeding, pp. 200–205, 2025, doi: 10.1109/ICoCSETI63724.2025.11020099.
M. M. Madbouly, S. M. Darwish, N. A. Bagi, and M. A. Osman, “Clustering Big Data Based on Distributed Fuzzy K-Medoids: An Application to Geospatial Informatics,” IEEE Access, vol. 10, pp. 20926–20936, 2022, doi: 10.1109/ACCESS.2022.3149548.
“Laporan Inventarisasi Gas Rumah Kaca (GRK) dan Monitoring, Pelaporan, Verifikasi (MPV) Tahun 2024,” Kementeri. Lingkung. Hidup Dan Kehutan., vol. 10, 2024.
A. L. Firmansyah, B. I. N, and Z. Arif, “Optimasi K-Means Clustering Pada Data Harga Mangga Menggunakan Particle Swarm Optimization,” J. Teknol. Sist. Inf., vol. 6, no. September, pp. 245–259, 2025, doi: 10.35957/jtsi.v6i2.13158.
C. Shi, B. Wei, S. Wei, W. Wang, H. Liu, and J. Liu, “A quantitative discriminant method of elbow point for the optimal number of clusters in clustering algorithm,” Eurasip J. Wirel. Commun. Netw., vol. 2021, no. 1, 2021, doi: 10.1186/s13638-021-01910-w.
A. Jimoh Jacob, J. Daniel, and C. Samuel Aneke, “Determination Of Optimal Number Of Clusters Using Gap Statistics And Elbow Methods,” Int. Multiling. J. Sci. Technol., vol. 9, no. 3, pp. 7361–7366, 2024, [Online]. Available: www.imjst.or
H. Řezanková, “Different approaches to the silhouette coefficient calculation in cluster evaluation,” 21st Int. Sci. Conf. AMSE, no. September, pp. 1–10, 2018.
Annisa Nadaa Shabrina, M. Afdal, and Siti Monalisa, “Comparison Of K-Means, K-Medoids, and Fuzzy C-Means Algorithms for Clustering Drug User’s Addiction Levels,” J. Sist. Cerdas, vol. 6, no. 2, pp. 113–122, 2023, doi: 10.37396/jsc.v6i2.313.
A. P. Putra, J. Tshivana, and E. Rilvani, “PERBANDINGAN TEORITIS DAN EKSPERIMEN ALGORITMA K-MEANS DAN K-MEDOIDS DALAM KLASTERISASI DATA,” Kohesi J. Multidisiplin Saintek, vol. 10, no. 2, pp. 1–24, 2025.
Z. Shapcott, “An Investigation into Distance Measures in Cluster Analysis,” no. April, pp. 1–38, 2024.
A. Sofro, R. A. Riani, K. N. Khikmah, R. W. Romadhonia, and D. Ariyanto, “Analysis of Rainfall in Indonesia Using a Time Series-Based Clustering Approach,” Barekeng, vol. 18, no. 2, pp. 837–848, 2024, doi: 10.30598/barekengvol18iss2pp0837-0848.
N. Sureja, B. Chawda, and A. Vasant, “An improved K-medoids clustering approach based on the crow search algorithm,” J. Comput. Math. Data Sci., vol. 3, no. April, p. 100034, 2022, doi: 10.1016/j.jcmds.2022.100034.
D. A. Dewi, S. Surono, R. Thinakaran, and A. Nurraihan, “Hybrid Fuzzy K-Medoids and Cat and Mouse-Based Optimizer for Markov Weighted Fuzzy Time Series,” Symmetry (Basel)., vol. 15, no. 8, 2023, doi: 10.3390/sym15081477.
M. A. Nahdliyah, T. Widiharih, and A. Prahutama, “METODE k-MEDOIDS CLUSTERING DENGAN VALIDASI SILHOUETTE INDEX DAN C-INDEX,” J. GAUSSIAN, vol. 8, pp. 161–170, 2019.
H. K. Sivaraman and R. Leburu, “Energy-efficient clustering and routing using fuzzy k-medoids and adaptive ranking-based wireless sensor network,” Int. J. Reconfigurable Embed. Syst., vol. 13, no. 3, pp. 774–785, 2024, doi: 10.11591/ijres.v13.i3.pp774-785.
D. T. Dinh, T. Fujinami, and V. N. Huynh, “Estimating the Optimal Number of Clusters in Categorical Data Clustering by Silhouette Coefficient,” Commun. Comput. Inf. Sci., vol. 1103 CCIS, pp. 1–17, 2019, doi: 10.1007/978-981-15-1209-4_1.
F. P. Purba, K. Roder, E. Simamora, and H. Nasution, “Implementation of Fuzzy C-Means (FCM) and Fuzzy Possibilistic C-Means (FPCM) for Clustering District/City Based on Health Services and Infectious Diseases in North Sumatera,” ZERO J. Sains, Mat. dan Terap., vol. 8, no. 2, p. 47, 2025, doi: 10.30829/zero.v8i2.23480.
Hidayatullah, S. Martha, and S. Aprizkiyandari, “ANALISIS K-MEANS MENGGUNAKAN METODE DUNN INDEX DALAM MENENTUKAN JUMLAH CLUSTER OPTIMAL (Studi Kasus: Indikator Pendidikan SMA di Indonesia Tahun 2022),” Bul. Ilm. Math. Stat. dan Ter., vol. 13, no. 3, pp. 303–310, 2024.
D. Selphia, M. Fathurrahman, M. Susilawati, N. Pratiwi, and R. Purnami, “PENERAPAN UJI MANN-WHITNEY DALAM PERBANDINGAN PRESTASI AKADEMIK MAHASISWA STATISTIKA UNIVERSITAS,” J. Eksbar, vol. 2, no. 1, pp. 19–28, 2024.
T. Sriwidadi, “PENGGUNAAN UJI MANN-WHITNEY PADA ANALISIS PENGARUH PELATIHAN WIRANIAGA DALAM PENJUALAN PRODUK BARU,” BINUS Bus. Rev., vol. 2, no. 2, pp. 751–762, 2011.
A. Damanhuri and A. Solikin, “IMPLEMENTASI UJI MANN-WHITNEY DALAM EVALUASI PRESTASI HASIL BELAJAR DALAM KEGIATAN PELATIHAN SAILS-UINSA DI FAKULTAS SYARIAH DAN HUKUM UINSA,” Didakt. J. Pendidik. dan Ilmu Pengetah., vol. 23, no. 1, pp. 40–47, 2023.
“Sistem Inventarisasi Gas Rumah Kaca Nasional-Sederhana, Mudah, Akurat, Ringkas, dan Transparan,” Kementerian Lingkungan Hidup Dan Kehutanan. Accessed: Oct. 11, 2025. [Online]. Available: https://signsmart.menlhk.go.id/
A. K. A. Tandir, P. Hergianasari, and S. S. Hadiwijoyo, “KEMITRAAN MULTI PIHAK DALAM PELESTARIAN EKOSISTEM HUTAN DI KALIMANTAN TENGAH TAHUN 2016-2020,” vol. 4, no. 4, pp. 2059–2072, 2024.
Bappeda Provinsi Papua, “Analisis Kerangka Pembangunan Provinsi Papua 2021,” Pemerintah Drh. Provinsi Papua, pp. 1–186, 2022.
“Jumlah Perusahaan Industri Skala Mikro dan Kecil Menurut Provinsi (Unit), 2023,” Badan Pusat Statistik. Accessed: Oct. 25, 2025. [Online]. Available: https://www.bps.go.id/id/statistics-table/2/NDQwIzI=/jumlah-perusahaan-industri-skala-mikro-dan-kecil-menurut-provinsi.html
DOI: http://dx.doi.org/10.30829/zero.v9i2.26449
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Publisher : Department of Mathematics Faculty of Science and Technology Universitas Islam Negeri Sumatera Utara Medan | |
✉️ Email: zero_journal@uinsu.ac.id 📱 WhatsApp:085270009767 (Admin Official) | |
| | | | |
