A Modified Frequency-Based FLRG Fuzzy Time Series Model for National Rice Production Forecasting
Abstract
Keywords
Full Text:
PDFReferences
P. Filippi, S. Y. Han, and T. F. A. Bishop, “On crop yield modelling, predicting, and forecasting and addressing the common issues in published studies,” Precis Agric, vol. 26, no. 1, pp. 8, 2025. [Online]. Available: https://doi.org/10.1007/s11119-024-10212-2
M. Sari, S. Duran, H. Kutlu, B. Guloglu, and Z. Atik, “Various optimized machine learning techniques to predict agricultural commodity prices,” Neural Comput Appl, vol. 36, no. 19, pp. 11439–11459, 2024. [Online]. Available: https://doi.org/10.1007/s00521-024-09679-x
Q. Song and B. S. Chissom, “Fuzzy time series and its models,” Fuzzy Sets Syst., vol. 54, no. 3, pp. 269–277, 1993. [Online]. Available: https://doi.org/10.1016/0165-0114(93)90372-O
S. M. Chen, “Forecasting enrollments based on fuzzy time series,” Fuzzy Sets Syst., vol. 81, no. 3, pp. 311–319, 1996. [Online]. Available: https://doi.org/10.1016/0165-0114(95)00220-0
R. C. Tsaur, “A fuzzy time series-backpropagation predictor for stock index forecasting,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 32, no. 1, pp. 70–80, 2002.
M. Bilal, M. A. Alrasheedi, M. Aamir, S. Abdullah, S. M. Norrulashikin, and R. Rezaiy, “Enhanced forecasting of rice price and production in Malaysia using novel multivariate fuzzy time series models,” Sci. Rep., vol. 14, no. 1, p. 29903, 2024. [Online]. Available: https://doi.org/10.1038/s41598-024-77907-4
F. Wahyu, G. W. Nurcahyo and S. Arlis, “Penerapan metode fuzzy time series untuk memprediksi hasil panen kopi pada dinas pertanian,” J. KomtekInfo, vol. 11, no.3, pp. 139–148, 2024. [Online]. Available: https://doi.org/10.35134/komtekinfo.v11i3.543
S. Lestari and S. Yurinanda, “Prediksi pajak pertambahan nilai pada penyediaan jasa dengan metode fuzzy time series model Chen,” Euler: J. Ilm. Mat. Sains Teknol., vol. 11, no. 2, pp. 267–281, 2023. [Online]. Available: https://doi.org/10.37905/euler.v11i2.22724
S. Q. Li, “A simplified prediction model of structural seismic vulnerability considering a multivariate fuzzy membership algorithm,” J. Earthq. Eng., vol. 28, no. 3, pp. 707–730, 2024. [Online]. Available: https://doi.org/10.1080/13632469.2023.2217945
H. Huang, Y. Tian, and Z. Tao, “Multi-rule combination prediction of compositional data time series based on multivariate fuzzy time series model and its application,” Expert Syst. Appl., vol. 238, p. 121966, 2024. [Online]. Available: https://doi.org/10.1016/j.eswa.2023.121966
S. M. Chen, “Forecasting enrollments based on high-order fuzzy time series,” Appl. Intell., vol. 17, no. 1, pp. 39–48, 2002. [Online]. Available: https://doi.org/10.1023/A:1015316315805
N. M. Arfiana, E. Alisah, and D. Ismiarti, “Penerapan metode fuzzy time series Chen orde tinggi pada peramalan hasil penjualan (studi kasus: KPRI ‘Serba Guna’ Kecamatan Selorejo Kabupaten Blitar),” J. Ris. Mhs. Mat., vol. 1, no. 6, pp. 273–282, 2022. [Online]. Available: https://doi.org/10.18860/jrmm.v1i6.14561
N. Kumar and S. S. Susan, “Particle swarm optimization of partitions and fuzzy order for fuzzy time series forecasting of COVID-19,” Appl. Soft Comput., vol. 110, p. 107611, 2021. [Online]. Available: https://doi.org/10.1016/j.asoc.2021.107611
R. Fadillah, M. Ula, and R. Suwanda, “Machine learning to predict food prices in Aceh province using the fuzzy time series method based on average,” Sinkron, vol. 9, no. 2, pp. 755–761, 2023. [Online]. Available: https://doi.org/10.33395/sinkron.v9i2.14649
S. N. A. Rahman and M. A. Kamarudin, “Review of fuzzy time series forecasting models and their applications,” IEEE Access, vol. 9, pp. 161642–161658, 2021. [Online]. Available: https://doi.org/10.1109/ACCESS.2021.3132657
J. M. Mendel, “Type-1 Fuzzy Sets and Fuzzy Logic,” in Explainable Uncertain Rule-Based Fuzzy Systems, Cham, Switzerland: Springer, 2024, pp. 17–73. [Online]. Available: https://doi.org/10.1007/978-3-031-35378-9_2
A. S. Brata, A. Anhar, W. Lestari, Y. Trisanti, and F. Nisa, “Metode fuzzy time series logika Ruey Chyn Tsaur untuk prediksi pola data trend naik (studi kasus pengiriman jumlah berat barang dengan transportasi kereta api Pulau Jawa satuan ribu ton tahun 2020-2022),” J. Math. Educ. Sci., vol. 6, no. 1, pp. 29–35, 2023. [Online]. Available: https://doi.org/10.32665/james.v6i1.887
F. Muzaki and N. Agustina, “Comparison of forecasting model using Chen and Lee high order fuzzy time series (farmer’s terms of trade of crops subsector in Nusa Tenggara Timur province case),” J. Mat. Stat. Komput., vol. 21, no. 2, pp. 467–481, 2025. [Online]. Available: https://doi.org/10.20956/j.v21i2.42000
R. Bhattacharyya and S. Mukherjee, “Fuzzy membership function evaluation by non-linear regression: An algorithmic approach,” Fuzzy Inf. Eng., vol. 12, no. 4, pp. 412–434, 2020. [Online]. Available: https://doi.org/10.1080/16168658.2021.1911567
S. Xian and Y. Cheng, “Pythagorean fuzzy time series model based on Pythagorean fuzzy c-means and improved Markov weighted in the prediction of the new COVID-19 cases,” Soft Comput., vol. 25, no. 18, pp. 13881–13896, 2021. [Online]. Available: https://doi.org/10.1007/s00500-021-06259-2
A. S. Brata, A. Anhar, W. Lestari, M. Juliza, S. Rahmawati, and M. T. A. E. Nugroho, “Average based length fuzzy time series data seasonal untuk prediksi volume impor migas Indonesia,” J. Ekon. Manaj. dan Sekr., vol. 6, no. 1, pp. 15–21, 2021. [Online]. Available: https://doi.org/10.35870/jemensri.v6i1.1764
Y. Alyousifi, M. Othman, A. Husin, and U. Rathnayake, “A new hybrid fuzzy time series model with an application to predict PM10 concentration,” Ecotoxicol. Environ. Saf., vol. 227, p. 112875, 2021. [Online]. Available: https://doi.org/10.1016/j.ecoenv.2021.112875
M. R. Yuliyanto, T. Wuryandari, and I. T. Utami, “Peramalan pendapatan bulanan menggunakan fuzzy time series Chen orde tinggi,” J. Gaussian, vol. 12, no. 1, pp. 61–70, 2023. [Online]. Available: https://doi.org/10.14710/j.gauss.12.1.61-70
I. R. Al Kadry, J. Massalesse, and M. Nur, “Forecasting inflation in Indonesia using the modified fuzzy time series Cheng,” J. Mat. Stat. Komput., vol. 19, no. 1, pp. 165–177, 2022. [Online]. Available: https://doi.org/10.20956/j.v19i1.21868
D. E. Harmadji, S. Solikhin, U. Yudatama, and A. Purwanto, “Prediksi produksi biofarmaka menggunakan model fuzzy time series dengan pendekatan percentage change dan frequency based partition”, J. Teknol. Inf. Ilmu Komput., vol. 10, no. 1, pp. 173–184, 2023. [Online]. Available: https://doi.org/10.25126/jtiik.2023106267
L. Palomero, V. García, and J. S. Sánchez, “Fuzzy-based time series forecasting and modelling: A bibliometric analysis,” Appl. Sci., vol. 12, no. 14, p. 6894, 2022. [Online]. Available: https://doi.org/10.3390/app12146894
B. Uluoz, “A new fuzzy time series forecasting model based on modified fuzzy logical relationship groups,” J. Forecast., vol. 41, no. 5, pp. 984–1002, 2022. [Online]. Available: https://doi.org/10.1002/for.2846
S. Gupta and S. Kumar, “A new proposed fuzzy time series forecasting model for agricultural production data,” Int. J. Intell. Syst. Appl., vol. 12, no. 6, pp. 43–55, 2020. [Online]. Available: https://doi.org/10.5815/ijisa.2020.06.04
N. Herawati, S. Saidi, Setiawan E., Nisa K., Ropiudin, “Performance of high-order Chen fuzzy time series forecasting method and feedforward backpropagation neural network method in forecasting composite stock price index, Am. J. Comput. Appl. Math., vol. 12 no. 1, 2022, pp. 1-7. [Online]. Available: https://doi.org/10.5923/j.ajcam.20221201.01
R. Yolanda, D. Rahmi, A. Kurniati, and S. Yuniati, “Penerapan metode triple exponential smoothing dalam peramalan produksi buah nenas di Provinsi Riau,” J. Teknol. dan Manaj. Ind. Terap., vol. 3, no. I, 2024. [Online]. Available: https://doi.org/10.55826/tmit.v3ii.285
S. Haben, V. Marcus, and W. Holderbaum, “Time series forecasting: Core concepts and definitions,” in Core Concepts and Methods in Load Forecasting, Cham, Switzerland: Springer, 2023, pp. 55–66. [Online]. Available: https://doi.org/10.1007/978-3-031-27852-5_5
L. Sarifah, S. Kamilah, and S. Khotijah, “Penerapan metode single moving average dalam memprediksi jumlah penduduk miskin pada perencanaan pembangunan daerah Kabupaten Pamekasan,” Zeta - Math J., vol. 8, no. 2, pp. 47–54, 2023. [Online]. Available: https://doi.org/10.31102/zeta.2023.8.2.47-54
L. Fauziah and F. Fauziah, “Penerapan metode single exponential smoothing dan moving average pada prediksi stock produk retail berbasis web,” STRING (Satuan Tulisan Ris. dan Inov. Teknol.), vol. 7, no. 2, pp. 165–173, 2022. [Online]. Available: https://doi.org/10.30998/string.v7i2.13932
DOI: http://dx.doi.org/10.30829/zero.v9i3.26441
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Publisher : Department of Mathematics Faculty of Science and Technology Universitas Islam Negeri Sumatera Utara Medan | |
✉️ Email: zero_journal@uinsu.ac.id 📱 WhatsApp:085270009767 (Admin Official) | |
| | | | |
