Bidirectional GRU for Aspect-Based Sentiment Classification in Multi-Dimensional Review Analysis
Abstract
Keywords
Full Text:
PDFReferences
S. Nosouhian, F. Nosouhian, and A. Kazemi Khoshouei, “A Review of Recurrent Neural Network Architecture for Sequence Learning: Comparison between LSTM and GRU.” pp. 16020–16030, 12-Jul-2021, doi: 10.20944/preprints202107.0252.v1.
M. Zulqarnain, R. Ghazali, Y. Mazwin, M. Hassim, and M. Rehan, “A comparative review on deep learning models for text classification,” vol. 19, no. 1, pp. 325–335, 2020, doi: 10.11591/ijeecs.v19.i1.pp325-335.
M. Zulqarnain, R. Ghazali, M. G. Ghouse, and M. F. Mushtaq, “Efficient Processing of GRU Based on Word Embedding for Text Classification,” vol. 3, pp. 377–383, doi: http://dx.doi.org/10.30630/joiv.3.4.289.
Z. M. Shaikh and S. Ramadass, “Unveiling deep learning powers: LSTM, BiLSTM, GRU, BiGRU, RNN comparison,” Indones. J. Electr. Eng. Comput. Sci., vol. 35, no. 1, p. 263, Jul. 2024, doi: 10.11591/ijeecs.v35.i1.pp263-273.
W. Ali, Y. Yang, X. Qiu, Y. Ke, and Y. Wang, “Aspect-Level Sentiment Analysis Based on Bidirectional-GRU in SIoT,” IEEE Access, vol. 9, pp. 69938–69950, 2021, doi: 10.1109/ACCESS.2021.3078114.
J. Wang, Y. Zhang, L. Yu, and X. Zhang, “Knowledge-Based Systems Contextual sentiment embeddings via bi-directional GRU language,” ELSEVIER, vol. 235, 2022.
D. R. I. M. Setiadi, D. Marutho, and N. A. Setiyanto, “Comprehensive Exploration of Machine and Deep Learning Classification Methods for Aspect-Based Sentiment Analysis with Latent Dirichlet Allocation Topic Modeling,” J. Futur. Artif. Intell. Technol., vol. 1, no. 1, pp. 12–22, 2024, doi: 10.62411/faith.2024-3.
G. R. Narayanaswamy and R. Citation, “Exploiting BERT and RoBERTa to Improve Performance for Aspect Based Sentiment Analysis Gagan Reddy Narayanaswamy,” 2021, doi: 10.21427/3w9n-we77.
M. H. Phan and P. Ogunbona, “Modelling Context and Syntactical Features for Aspect-based Sentiment Analysis,” pp. 3211–3220, 2020, doi: 10.18653/v1/2020.acl-main.293.
A. Musa, F. M. Adam, U. Ibrahim, and A. Y. Zandam, “HauBERT : A Transformer Model for Aspect-Based Sentiment Analysis of Hausa-Language Movie Reviews †,” pp. 1–18, 2025, doi: https://doi.org/10.3390/engproc2025087043.
E. Yulianti and N. K. Nissa, “ABSA of Indonesian customer reviews using IndoBERT : single- sentence and sentence-pair classification approaches,” vol. 13, no. 5, pp. 3579–3589, 2024, doi: 10.11591/eei.v13i5.8032.
D. A. Anggoro and N. D. Kurnia, “Comparison of Accuracy Level of Support Vector Machine ( SVM ) and K-Nearest Neighbors ( KNN ) Algorithms in Predicting Heart Disease,” vol. 8, no. 5, 2020, doi: https://doi.org/10.30534/ijeter/2020/32852020.
S. Shabani, S. Samadianfard, M. T. Sattari, and A. Mosavi, “Modeling Pan Evaporation Using Gaussian Process Regression K-Nearest Neighbors Random Forest and Support Vector Machines ; Comparative Analysis,” Atmosphere (Basel)., vol. 11, no. 66, 2020, doi: 10.3390/atmos11010066.
S. P. Sharma, L. Singh, and R. Tiwari, “Original Research Article Prediction of customer review ’ s helpfulness based on sentences encoding using CNN-BiGRU model,” vol. 6, no. 3, 2023, doi: 10.32629/jai.v6i3.699.
G. D. Aniello, M. Gaeta, and I. La, KnowMIS ‑ ABSA : an overview and a reference model for applications of sentiment analysis and aspect ‑ based sentiment analysis, vol. 55, no. 7. Springer Netherlands, 2022, doi: https://doi.org/10.1007/s10462-021-10134-9
J. Ouyang, Z. Yang, S. Liang, B. Wang, Y. Wang, and X. Li, “Aspect-Based Sentiment Analysis with Explicit Sentiment Augmentations,” in The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24) Aspect-Based, 2024, pp. 18842–18850, doi: https://doi.org/10.1609/aaai.v38i17.29849.
A. Khan, “RNN-LSTM-GRU based language transformation,” Soft Comput., vol. 0123456789, 2019, doi: 10.1007/s00500-019-04281-z.
F. M. Shiri, T. Perumal, and N. Mustapha, “A Comprehensive Overview and Comparative Analysis on Deep Learning Models,” no. Ml, 2024, doi: 10.32604/jai.2024.054314.
N. N. Cnn, L. Short, and T. Memory, “Sentiment Analysis on Twitter Data by Using Convolutional,” Springer, no. 0123456789, 2021, doi: 10.1007/s11277-021-08580-3.
A. Shewalkar, D. Nyavanandi, and S. A. Ludwig, “Performance Evaluation Of Deep Neural Networks Applied To Speech Recognition : Rnn , Lstm And Gru,” vol. 9, no. 4, pp. 235–245, 2019, doi: 10.2478/jaiscr-2019-0006.
B. Bilstm, S. Munawar, N. Javaid, Z. A. Khan, and N. I. Chaudhary, “Electricity Theft Detection in Smart Grids Using a Hybrid,” Sensors, vol. 22, 2022, doi: https://doi.org/10.3390/s22207818.
P. He, H. Qi, S. Wang, and J. Cang, “applied sciences Cross-Modal Sentiment Analysis of Text and Video Based on Bi-GRU Cyclic Network and Correlation Enhancement,” Appl. Sci., vol. 13, 2023, doi: https://doi.org/10.3390/app13137489.
A. Z. Arrayyan, H. Setiawan, and K. T. Putra, “Naive Bayes for Diabetes Prediction : Developing a Classification Model for Risk Identification in Specific Populations,” vol. 27, no. 1, pp. 28–36, 2024, doi: https://doi.org/10.18196/st.v27i1.21008.
I. Wickramasinghe, “Naive Bayes : applications , variations and vulnerabilities : a review of literature with code snippets for implementation,” Soft Comput., no. 1989, 2020, doi: 10.1007/s00500-020-05297-6.
E. Setiawan, F. Ferry, J. Santoso, S. Sumpeno, K. Fujisawa, and M. Purnomo, “Bidirectional GRU for Targeted Aspect-Based Sentiment Analysis Based on Character-Enhanced Token-Embedding and Multi-Level Attention,” Int. J. Intell. Eng. Syst., vol. 13, no. 5, pp. 392–407, Oct. 2020, doi: 10.22266/ijies2020.1031.35.
DOI: http://dx.doi.org/10.30829/zero.v9i2.25754
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Publisher : Department of Mathematics Faculty of Science and Technology Universitas Islam Negeri Sumatera Utara Medan | |
✉️ Email: zero_journal@uinsu.ac.id 📱 WhatsApp:085270009767 (Admin Official) |
![]() | ![]() | ![]() | ![]() | ![]() |