Rainfall Risk Modelling for Rice Farming Using Continuous Hidden Markov Models
Abstract
Keywords
Full Text:
PDFReferences
A. Ansari, Y. P. Lin, and H. S. Lur, “Evaluating and adapting climate change impacts on rice production in indonesia: A case study of the keduang subwatershed, Central Java,” Environments, vol. 8, p. 117, Nov. 2021, doi: 10.3390/environments8110117.
A. Berhane, “Climate Change and Variability Impacts on Agricultural Productivity and Food Security,” J. Climatol. Weather Forecast., vol. 6, no. 3, p. 240, 2018, doi: 10.4172/2332-2594.1000240.
O. E. Olayide and T. Alabi, “Between rainfall and food poverty: Assessing vulnerability to climate change in an agricultural economy,” J. Clean. Prod., vol. 198, pp. 1–10, 2018, doi: 10.1016/j.jclepro.2018.06.221.
G. C. Matchaya, G. Tadesse, and A. N. Kuteya, “Rainfall shocks and crop productivity in Zambia: Implication for agricultural water risk management,” Agric. Water Manag., vol. 269, p. 107648, 2022, doi: 10.1016/j.agwat.2022.107648.
B. Praveen and P. Sharma, “A review of literature on climate change and its impacts on agriculture productivity,” J. Public Aff., vol. 19, no. 4, pp. 1–15, 2019, doi: 10.1002/pa.1960.
R. Tirtalistyani, M. Murtiningrum, and R. S. Kanwar, “Indonesia Rice Irrigation System: Time for Innovation,” Sustainability, vol. 14, no. 19, p. 12477, 2022, doi: 10.3390/su141912477.
A. Ansari et al., “Evaluating the effect of climate change on rice production in Indonesia using multimodelling approach,” Heliyon, vol. 9, p. e19639, Sep. 2023, doi: 10.1016/j.heliyon.2023.e19639.
S. Ruiz-Suarez, V. Leos-Barajas, and J. M. Morales, “Hidden Markov and Semi-Markov Models When and Why are These Models Useful for Classifying States in Time Series Data?,” J. Agric. Biol. Environ. Stat., vol. 27, no. 2, pp. 339–363, 2022, doi: 10.1007/s13253-021-00483-x.
O. Stoner and T. Economou, “An advanced hidden Markov model for hourly rainfall time series,” Comput. Stat. Data Anal., vol. 152, p. 107045, 2020, doi: 10.1016/j.csda.2020.107045.
M. Zhang, X. Jiang, Z. Fang, Y. Zeng, and K. Xu, “High-order Hidden Markov Model for trend prediction in financial time series,” Phys. A Stat. Mech. its Appl., vol. 517, pp. 1–12, 2019, doi: 10.1016/j.physa.2018.10.053.
O. Nikdelfaz and S. Jalili, “Disease genes prediction by HMM based PU-learning using gene expression profiles,” J. Biomed. Inform., vol. 81, pp. 102–111, 2018, doi: 10.1016/j.jbi.2018.03.006.
R. Glennie, T. Adam, V. Leos-Barajas, T. Michelot, T. Photopoulou, and B. T. McClintock, “Hidden Markov models: Pitfalls and opportunities in ecology,” Methods Ecol. Evol., vol. 14, no. 1, pp. 43–56, 2023, doi: 10.1111/2041-210X.13801.
Q. Deng and D. Söffker, “A Review of HMM-Based Approaches of Driving Behaviors Recognition and Prediction,” IEEE Trans. Intell. Veh., vol. 7, no. 1, pp. 21–31, 2022, doi: 10.1109/TIV.2021.3065933.
A. M. Nyongesa, G. Zeng, and V. Ongoma, “Non-homogeneous hidden Markov model for downscaling of short rains occurrence in Kenya,” Theor. Appl. Climatol., vol. 139, no. 3, pp. 1333–1347, 2020, doi: 10.1007/s00704-019-03016-2.
L. Guo, Z. Jiang, and W. Chen, “Using a Hidden Markov Model to Analyze the Flood-Season Rainfall Pattern and Its Temporal Variation over East China,” J. Meteorol. Res., vol. 32, no. 3, pp. 410–420, 2018, doi: 10.1007/s13351-018-7107-9.
H. Wang, T. Asefa, and A. Sarkar, “A novel non-homogeneous hidden Markov model for simulating and predicting monthly rainfall,” Theor. Appl. Climatol., vol. 143, no. 1, pp. 627–638, 2021, doi: 10.1007/s00704-020-03447-2.
L. R. Rabiner, “A tutorial on hidden Markov models and selected applications in speech recognition,” Proc. IEEE, vol. 77, no. 2, pp. 257–286, 1989, doi: 10.1109/5.18626.
M. L. Gámiz, N. Limnios, and M. C. Segovia-García, “The continuous-time hidden Markov model based on discretization. Properties of estimators and applications,” Stat. Inference Stoch. Process., vol. 26, no. 3, pp. 525–550, 2023, doi: 10.1007/s11203-023-09292-0.
Y. Du, T. Wu, and V. Makis, “Parameter estimation and remaining useful life prediction of lubricating oil with HMM,” Wear, vol. 376–377, pp. 1227–1233, 2017, doi: 10.1016/j.wear.2016.11.047.
O. Zadehbagheri, M. R. Salehizadeh, S. V. Naghavi, M. Moattari, and B. Moshiri, “Novel Adaptive Hidden Markov Model Utilizing Expectation–Maximization Algorithm for Advanced Pipeline Leak Detection,” Modelling, vol. 5, no. 4, pp. 1339–1364, 2024, doi: 10.3390/modelling5040069.
B. Setiawaty, A. Y. Lestari, D. C. Lesmana, and N. K. K. Ardana, “Predicting the conditions of stock market using hidden Markov models,” AIP Conf. Proc., vol. 3201, no. 1, 2024, doi: 10.1063/5.0230595.
C. Puerto-Santana, P. Larranaga, and C. Bielza, “Autoregressive Asymmetric Linear Gaussian Hidden Markov Models,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 9, pp. 4642–4658, 2022, doi: 10.1109/TPAMI.2021.3068799.
M. El Annas, M. Ouzineb, and B. Benyacoub, “Hidden Markov Models Training Using Hybrid Baum Welch - Variable Neighborhood Search Algorithm,” Stat. Optim. Inf. Comput., vol. 10, no. 1, pp. 160–170, 2022, doi: 10.19139/soic-2310-5070-1213.
R. Kuiper, “AIC-type Theory-Based Model Selection for Structural Equation Models,” Struct. Equ. Model., vol. 29, no. 1, pp. 151–158, 2022, doi: 10.1080/10705511.2020.1836967.
S. Kim and H. Kim, “A new metric of absolute percentage error for intermittent demand forecasts,” Int. J. Forecast., vol. 32, no. 3, pp. 669–679, 2016, doi: 10.1016/j.ijforecast.2015.12.003.
DOI: http://dx.doi.org/10.30829/zero.v9i3.25443
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Publisher : Department of Mathematics Faculty of Science and Technology Universitas Islam Negeri Sumatera Utara Medan | |
✉️ Email: zero_journal@uinsu.ac.id 📱 WhatsApp:085270009767 (Admin Official) | |
| | | | |
