Bifurcation Analysis of Cubic Type Nonlinear Schrödinger Equation with Dispersion and Attenuation in Optical Fiber
Abstract
Keywords
Full Text:
PDFReferences
M. Ramli, M. Ikhwan, N. Nazaruddin, H. A. Mardi, T. Usman, and E. Safitri, "Multi-peak soliton dynamics and decoherence via the attenuation effects and trapping potential based on a fractional nonlinear Schrödinger cubic quintic equation in an optical fiber," Alexandria Eng. J., vol. 107, no. November 2023, pp. 507-520, 2024, doi: 10.1016/j.aej.2024.07.037.
H. Abdillah Mardi, N. Nasaruddin, M. Ikhwan, N. Nurmaulidar, and M. Ramli, "Soliton dynamics in optical fiber based on nonlinear Schrödinger equation," Heliyon, vol. 9, no. 3, 2023, doi: 10.1016/j.heliyon.2023.e14235.
M. F. Alotaibi, N. Raza, M. H. Rafiq, and A. Soltani, "New solitary waves, bifurcation and chaotic patterns of Fokas system arising in monomode fiber communication system," Alexandria Eng. J., vol. 67, pp. 583-595, 2023, doi: 10.1016/j.aej.2022.12.069.
J. S. Russel, "The report of the meeting of the British Association for the advancement of science [5]," 1870. doi: 10.1038/002124a0.
D. Fadhiliani et al., "The dynamics of surface wave propagation based on the Benjamin Bona Mahony equation," Heliyon, vol. 6, no. 5, p. e04004, 2020, doi: 10.1016/j.heliyon.2020.e04004.
D. J. Zhang, S. L. Zhao, Y. Y. Sun, and J. Zhou, "Solutions to the modified Korteweg-de Vries equation," Rev. Math. Phys., vol. 26, no. 7, pp. 1-42, 2014, doi: 10.1142/S0129055X14300064.
G. P. Agrawal, "Chapter 5 - Optical Solitons," in Nonlinear Fiber Optics (Fifth Edition), Fifth Edition., G. Agrawal, Ed., in Optics and Photonics. , Boston: Academic Press, 2013, pp. 129-191. doi: https://doi.org/10.1016/B978-0-12-397023-7.00005-X.
R. Boyd and B. Masters, "Nonlinear Optics, Third Edition," J. Biomed. Opt., vol. 14, p. 29902, 2009, doi: 10.1117/1.3115345.
L. Hakim and A. Kusumastuti, "Generalisasi Fungsi Airy sebagai Solusi Analitik Persamaan Schrodinger Nonlinier," CAUCHY J. Mat. Murni dan Apl., vol. 2, no. 2, pp. 86-95, 2012, doi: 10.18860/ca.v2i2.2223.
G. Agrawal, "Nonlinear Fiber Optics," Nonlinear Fiber Opt., 2006, doi: 10.1016/B978-0-12-369516-1.X5000-6.
A. Choudhuri and K. Porsezian, "Impact of dispersion and non-Kerr nonlinearity on the modulational instability of the higher-order nonlinear Schrödinger equation," Phys. Rev. A - At. Mol. Opt. Phys., vol. 85, no. 3, pp. 1-6, 2012, doi: 10.1103/PhysRevA.85.033820.
R. Fukuizumi and A. Sacchetti, "Bifurcation and Stability for Nonlinear Schrödinger Equations with Double Well Potential in the Semiclassical Limit," J. Stat. Phys., vol. 145, no. 6, pp. 1546-1594, 2011, doi: 10.1007/s10955-011-0356-y.
H. Qausar, M. Ramli, S. Munzir, M. Syafwan, H. Susanto, and V. Halfiani, "Nontrivial on-site soliton solutions for stationary cubic-quintic discrete nonlinear schrodinger equation," IAENG Int. J. Appl. Math., vol. 50, no. 2, pp. 1-5, 2020.
S. J. Chapman, M. Kavousanakis, E. G. Charalampidis, I. G. Kevrekidis, and P. G. Kevrekidis, "A spectral analysis of the nonlinear Schrödinger equation in the co-exploding frame," Phys. D Nonlinear Phenom., vol. 439, 2022, doi: 10.1016/j.physd.2022.133396.
M. Zhen and B. Zhang, "Normalized ground states for the critical fractional NLS equation with a perturbation," Rev. Mat. Complut., vol. 35, no. 1, pp. 89-132, 2022, doi: 10.1007/s13163-021-00388-w.
Y. Y. Yan and W. J. Liu, "Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg-Landau Equation," Chinese Phys. Lett., vol. 38, no. 9, pp. 1-4, 2021, doi: 10.1088/0256-307X/38/9/094201.
B. S. T. Alkahtani, "Propagation of wave insights to the Chiral Schrödinger equation along with bifurcation analysis and diverse optical soliton solutions," Alexandria Eng. J., vol. 108, pp. 800-810, 2024, doi: 10.1016/j.aej.2024.08.116.
D. Damanik, M. Ruzhansky, V. Vougalter, M. W. Wong, R. Adami, and D. Noja, "Exactly solvable models and bifurcations: The case of the cubic NLS with a or a interaction in dimension one," Math. Model. Nat. Phenom., vol. 9, no. 5, pp. 1-16, 2014, doi: 10.1051/mmnp/20149501.
J. Song, B. A. Malomed, and Z. Yan, "Symmetry-breaking bifurcations and excitations of solitons in linearly coupled NLS equations with P T -symmetric potentials," Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 479, no. 2278, pp. 1-20, 2023, doi: 10.1098/rspa.2023.0457.
A. M. Djaouti, M. Roshid, and H. Roshid, "Optimizing Optical Fiber Communications : Bifurcation Analysis and Soliton Dynamics in the Quintic Kundu - Eckhaus Model," pp. 1-24, 2025.
Alligood, Kathleen T, T. D. Sauer, and J. A. Yorke, Introduction to Dynamical Systems. United State of America: Springer-Verlag New York, Inc, 2000. doi: 10.1201/b16036-24.
C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases, 2nd ed. Cambridge University Press, 2008.
A. Walia and B. Singh, "Solution of Non-linear Equations Using Newton Raphson and Quasi-Newton Method and Application in Engineering Field. AIJR Abstracts," vol. 22, no. 4, pp. 2164-2181, 2022.
N. İ. Karabaş, S. Ö. Korkut, G. Tanoğlu, I. Aziz, and Siraj-ul-Islam, "An efficient approach for solving nonlinear multidimensional Schrödinger equations," Eng. Anal. Bound. Elem., vol. 132, no. August, pp. 263-270, 2021, doi: 10.1016/j.enganabound.2021.07.009.
S. Strogatz author, Nonlinear dynamics and chaos : with applications to physics, biology, chemistry, and engineering. Second edition. Boulder, CO : Westview Press, a member of the Perseus Books Group, [2015]. [Online]. Available: https://search.library.wisc.edu/catalog/9910223127702121
S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, vol. 75, no. 472. springer, 2003. doi: 10.2307/3620310.
DOI: http://dx.doi.org/10.30829/zero.v9i2.25440
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Publisher : Department of Mathematics Faculty of Science and Technology Universitas Islam Negeri Sumatera Utara Medan | ||||
| ||||
| | | | |
