Cluster Analysis of Factors Affecting the Amount of Shipping Costs PT. Indah Logistik Cargo Lampung Branch Using Average Linkage Method

Bernadhita Herindri, Ranara Athlla Yoka, Riza Sawitri

Abstract


Cluster analysis analyzes similar elements as different and independent cluster research objects (not interconnected). PT. Indah Logistik Cargo is a company that provides goods and motorcycle shipping services through three channels: land, sea, and air. This research has three objectives. The first is to categorize postage prices based on the type of goods and services provided so that customers can easily see the options available and understand the differences between each option. Thirdly, categorize prices so companies can offer special promotions or discounts for certain services. Fourth, cluster prices so companies can offer special promotions or discounts for certain services. Based on the analysis results, 3 cluster groups were formed: cheap, medium, and expensive. It can be concluded that the group with low postage prices (Rp 16,160 to Rp 622,160) consists of Medan, Bengkulu, Palembang, Padang, and Pekanbaru; the group with medium postage prices (Rp 40,400 to Rp 888,800) is only Banda Aceh; and the group with high postage prices (Rp 62,620 to Rp 1,555,400) consists of Tanjung Pinang and Pangkal Pinang.

Keywords


Cluster Analysis; Average Linkage Method; PT. Indah Logistic Cargo;

Full Text:

PDF

References


M. G. H. Omran, A. P. Engelbrecht, and A. Salman, “An Overview of Clustering methods,” Intell. Data Anal., vol. 11, no. 6, pp. 583–605, 2007, doi: 10.3233/ida-2007-11602.

M. Crum, T. Nelson, J. de Borst, and P. Byrnes, “The Use of Cluster Analysis in Entrepreneurship Research: Review of Past Research and Future Directions,” J. Small Bus. Manag., vol. 60, no. 4, pp. 961–1000, 2022, doi: 10.1080/00472778.2020.1748475.

N. Sari, E. Sudriyanti, and N. Hanif, “Transport Network Planning for Freight Transport based on Environmental Approach,” Adv. Environ. Sci., vol. 13, no. 2, pp. 70–77, 2021, [Online]. Available: http://www.aes.bioflux.com.ro

A. Saxena et al., “A Review of Clustering Techniques and Developments,” Neurocomputing, vol. 267, no. 1, pp. 664–681, 2017, doi: 10.1016/j.neucom.2017.06.053.

S. Setyaningtyas, B. I. Nugroho, and A. Zaenul, “Tinjauan Pustaka Sistematis: Penerapan Data Mining Teknik Clustering Algoritma K-Means,” J. Teknoif Tek. Inform. Inst. Teknol. Padang, vol. 10, no. 2, pp. 52–61, 2022, doi: 10.21063/jtif.2022.v10.2.52-61.

P. Govender and V. Sivakumar, “Application of K-Means and Hierarchical Clustering Techniques for Analysis of Air Pollution: A review (1980–2019),” Atmos. Pollut. Res., vol. 11, no. 1, pp. 40–56, 2020, doi: 10.1016/j.apr.2019.09.009.

Supratno, J. (2004). Analisis Multivariat Arti dan Interpretasi. Jakarta: Rineka Cipta.

Hardius Usman, dkk. (2013). Aplikasi Teknik Multivariate untuk Riset Pemasaran. Jakarta: PT Grafindo Persada.

Hardle. W. dan L. Simar. (2007). Applied Multivariate Statistical Analysis. 2nd Edition. New York: Springer Berlin Heidelberg.

Johnson dan Wichern. (2007). Applied Multivariate Stastistical Analysis 6^thEdition. New Jersey: Prentice-Hall, Inc.

Johnson, S.C. (1967). Hierarchical Clustering Schemes. New Jersey: Pretice-Hall, Inc. 9

Lind, Douglas A, dkk. (2007). Teknik-teknik Statistika dalam Bisnis dan Ekonomi. Jakarta: Salemba Empat.

Narimawati, U. (2008). Metodologi Penelitian Kulitatif dan Kuantitatif, Teori dan Aplikasi. Bandung: Agung Media.

Simamora, Bilson. (2005). Analisis Multivariat Pemasaran Edisi Pertama. Jakarta: PT Gramedia Pustaka Utama.




DOI: http://dx.doi.org/10.30829/zero.v8i2.21581

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Department of Mathematics
Faculty of Science and Technology
Universitas Islam Negeri Sumatera Utara Medan 

Email: mtk.saintek@uinsu.ac.id