Estimated North Sumatra Province Poor Population Percentage Using Penalized Spline Semiparametric Approach and Small Area Estimation

Jihan Adelia Nasution, Rina Widya Sari, Ismail Husein

Abstract


Poverty is one of the many problems that have not been completely resolved by the government in Indonesia, one of which is poverty in the province of North Sumatra. To estimate the percentage of poor people, data is needed in each area using the Small Area Estimation method. Small Area Estimation is used to estimate the parameters of a subpopulation that has a small scope. However, to get a better estimate, you can use an indirect estimation method, one of which is the semiparametric Penalized Spline approach. This method can be used in conjunction with small area estimation because it can connect the two components in the model between the response variable and the predictor variable which is linear and the relationship between the response variable and the predictor variable is non-linear. Based on the small area estimation model with a semiparametric penalized spline approach, the best is found in model 4 with a coefficient of determination value of 0.645 where the value is close to 1, which means the results are good to use. The average poor population in North Sumatra province is estimated at 15.38%, the highest poor population is in Pakpak Bharat at 22.66% and the lowest estimated poor population is in Deli Serdang at 7.51%.


Keywords


Poor People, Small Area Estimation, Semiparametric, Penalized Spline

Full Text:

PDF

References


Mulyono, Edy, S. (2017). Kemiskinan dan Pemberdayaan Masyarakat. Yogyakarta: Penerbit Ombak.

Badan Pusat Statistik Provinsi Sumatera Utara. (2020, Maret). Profil Kemiskinan Provinsi Sumatera Utara Maret 2020. Dipetik Desember 30, 2020, dari https://sumut.bps.go.id/.

Beik I, Arsyianti L. (2017). Ekonomi Pembangunan Syariah. Jakarta: Rajawali Pers.

Soleh, A. (2018). Analisis dan Strategi Pengentasan Kemiskinan di Provinsi Jambi. Jurnal Ilmiah

Riyaldi, H. (2017). Kedudukan dan Prinsip Pembagian Zakat dalam Mengatasi Permasalahan

Alhudori, M. (2017). Pengaruh IPM, PRDB, dan Jumlah Pengangguran Terhadap Penduduk Miskin

Aristi, et al. (2018). Small Area Estimation Terhadap Kemiskinan di Ketapang dengan Pendekatan

Azmi, S. (2019). Small Area Estimation Terhadap Angka Kelahiran di Kota Medan dengan Menggunakan Pendekatan Kernel-Bootstrap. Skripsi. Universitas Islam Negeri Sumatera Utara. Medan.

Febriani, E., Yozza, H., Rahmi, I. (2019). Pendugaan Jumlah Penduduk Miskin di Indonesia Pada Suatu Area Kecil dengan Pendekatan Kernel-Bootstrap. Jurnal Matematika Unand, 8(3),39-46.

Ningrum, M., Satyahadewi, N., Debataraja, N. (2020). Pemodelan Faktor-Faktor yang Mempengaruhi Indeks Pembangunan Manusia di Indonesia Menggunakan Regresi Semiparametrik Spline.




DOI: http://dx.doi.org/10.30829/zero.v6i2.19265

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

SLOT GACOR

SLOT GACOR

SLOT GACOR

SLOT GACOR

SLOT GACOR

SLOT GACOR

Department of Mathematics
Faculty of Science and Technology
Universitas Islam Negeri Sumatera Utara MedanĀ 

Email: mtk.saintek@uinsu.ac.id

situs scatter hitam