APPLICATION OF HYBRID LSTAR-GARCH MODEL WITH EXPECTED TAILL LOSS IN PREDICTING THE PRICE MOVEMENT OF BITCOIN CRYPTOCURRENCY AGAINST RUPIAH CURRENCY

Yanna Rezki Fadillah, Rina Widyasari

Abstract


Time series data from bitcoin has nonlinear data fluctuations so that a model is needed that can accommodate data with these conditions. The method that can be used for nonlinear time series data cases such as bitcoin is the LSTAR-GARCH model. LSTAR-GARCH is a combination of the LSTAR model and the GARCH model. Bitcoin investment also contains an element of risk. To find out the value of risk, the Expected Tail Loss risk measurement tool can be used. Expected Tail Loss (ETL). The data used in this study are historical daily bitcoin price data for the period April 1, 2022 to April 1, 2023. The modeling results obtained based on the MAPE value show that the LSTAR-GARCH model is the best model with the smallest MAPE value of 30% compared to the AR, LSTAR, or AR-GARCH models. The expected Taill loss value of bitcoin is -0.06784.

Keywords


Forecasting, Time series, Bitcoin, LSTAR, GARCH, Expected Taill Loss

Full Text:

PDF

References


F. Chana, D. Marinovab, and M. Mcaleera, “STAR-GARCH Models of Ecological Patents in the USA,” pp. 526–531, 1997.

M. A. Maliki, I. Cholissodin, and N. Yudistira, “Prediksi Pergerakan Harga Cryptocurrency Bitcoin terhadap Mata Uang Rupiah menggunakan Algoritme LSTM,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 7, pp. 3259–3268, 2022.

G. Kresnawati, B. Warsito, and A. Hoyyi, “Peramalan Indeks Harga Saham Gabungan Dengan Metode Logistic Smooth Transition Autoregressive (Lstar),” J. Gaussian, vol. 7, no. 1, pp. 84–95, 2018, doi: 10.14710/j.gauss.v7i1.26638.

A. H. A. Zili, Derick Hendri, and S. A. A. Kharis, “Peramalan Harga Saham Dengan Model Hybrid Arima-Garch dan Metode Walk Forward,” J. Stat. dan Apl., vol. 6, no. 2, pp. 341–354, 2022, doi: 10.21009/jsa.06218.

M. Odelia, D. A. I. Maruddani, and H. Yasin, “PERAMALAN HARGA SAHAM DENGAN METODE LOGISTIC SMOOTH TRANSITION AUTOREGRESSIVE (LSTAR) (Studi Kasus pada Harga Saham Mingguan PT. Bank Mandiri Tbk Periode 03 Januari 2011 sampai 24 Desember 2018),” J. Gaussian, vol. 9, no. 4, pp. 391–401, 2020, doi: 10.14710/j.gauss.v9i4.29403.

U. Azmi and W. H. Syaifudin, “Peramalan Harga Komoditas Dengan Menggunakan Metode Arima-Garch,” J. Varian, vol. 3, no. 2, pp. 113–124, 2020, doi: 10.30812/varian.v3i2.653.

N. Salwa, N. Tatsara, R. Amalia, and A. F. Zohra, “Peramalan Harga Bitcoin Menggunakan Metode ARIMA (Autoregressive Integrated Moving Average),” J. Data Anal., vol. 1, no. 1, pp. 21–31, 2018, doi: 10.24815/jda.v1i1.11874.

I. G. M. H. PRATAMA, I. W. SUMARJAYA, and N. L. P. SUCIPTAWATI, “Peramalan Harga Bitcoin Dengan Metode Smooth Transition Autoregressive (Star),” E-Jurnal Mat., vol. 11, no. 2, p. 100, 2022, doi: 10.24843/mtk.2022.v11.i02.p367.

N. B. Yolanda, N. Nainggolan, and H. A. H. Komalig, “Penerapan Model ARIMA-GARCH Untuk Memprediksi Harga Saham Bank BRI,” J. MIPA, vol. 6, no. 2, p. 92, 2017, doi: 10.35799/jm.6.2.2017.17817.

N. F. F. Rizani, M. Mustafid, and S. Suparti, “Penerapan Metodeexpected Shortfallpada Pengukuran Risiko Investasi Saham Dengan Volatilitas Model Garch,” J. Gaussian, vol. 8, no. 1, pp. 184–193, 2019, doi: 10.14710/j.gauss.v8i1.26644.

D. M. H. Ilmawan, B. Warsito, and S. Sugito, “Penerapan Artificial Neural Network Dengan Optimasi Modified Artificial Bee Colony Untuk Meramalkan Harga Bitcoin Terhadap Rupiah,” J. Gaussian, vol. 9, no. 2, pp. 135–142, 2020, doi: 10.14710/j.gauss.v9i2.27815.

G. A. M. A. Putri, N. P. N. Hendayanti, and M. Nurhidayati, “Pemodelan Data Deret Waktu Dengan Autoregressive Integrated Moving Average Dan Logistic Smoothing Transition Autoregressive,” J. Varian, vol. 1, no. 1, p. 54, 2017, doi: 10.30812/varian.v1i1.50.

M. S. M. Dadan Kusnandar, “Pemodelan Dan Peramalan Volatilitas Saham Menggunakan Model Integrated Generalized Autoregressive Conditional Heteroscedasticity,” Bimaster Bul. Ilm. Mat. Stat. dan Ter., vol. 9, no. 1, pp. 79–86, 2020, doi: 10.26418/bbimst.v9i1.38669.

A. S. G. Models, “On Evaluating the Volatility of Nigerian Gross Domestic Product Using Smooth Transition,” vol. 9, no. 3, pp. 102–106, 2021, doi: 10.12691/ajams-9-3-4.

P. Kartikasari and H. Kuswanto, “MODEL LSTAR ( LOGISTIK SMOOTHING TRANSITIONAUTOREGRESSIVE ) UNTUK PEMODELAN RETURN SAHAMPADA PT . BANK RAKYAT INDONESIA DAN PT . BANK NEGARA INDONESIA ( LSTAR MODEL ( LOGISTIK SMOOTHING TRANSITION AUTOREGRESSIVE ) FOR MODELLINGSTOCK MARKET RETURN AT PT . BANK RAKYAT INDONESIA AND PT . BANK NEGARAINDONESIA ),” no. November, pp. 132–144, 2014.

P. Kartikasari and H. Kuswanto, “Model Lstar ( Logistik Smoothing Transitionautoregressive ) Untuk Pemodelan Return Sahampada Pt . Bank Rakyat Indonesia Dan Pt . Bank Negara Indonesia ( Lstar Model ( Logistik Smoothing Transition Autoregressive ) for Modellingstock Market Return At Pt .,” Pros. Semin. Nas. Mat. Univ. Jember, no. November, pp. 132–144, 2014.

B. N. Chandra, N. N. Debataraja, and N. Imro’ah, “Model Logistic Smooth Transition Autoregressive Pada Produksi Kelapa Sawit,” Bul. Ilm. Mat. Stat. dan Ter., vol. 10, no. 3, pp. 369–378, 2021.

P. H. RS Faustina, A Agoestanto, “Model Hybrid ARIMA-GARCH Untuk Estimasi Volatilitas harga Emas,” UNNES J. Math., vol. 6, no. 1, pp. 11–24, 2017.

S. N. Brilliantya, K. Nisa, S. Saidi, and E. Setiawan, “Model EGARCH dan TGARCH untuk Mengukur Volatilitas Asimetris Return Saham,” vol. 03, no. 02, pp. 45–52, 2022.

I. Indriyanti, N. Ichsan, H. Fatah, T. Wahyuni, and E. Ermawati, “Implementasi Orange Data Mining Untuk Prediksi Harga Bitcoin,” J. Responsif Ris. Sains dan Inform., vol. 4, no. 2, pp. 118–125, 2022, doi: 10.51977/jti.v4i2.762.

S. Setyowibowo, M. As’ad, S. Sujito, and E. Farida, “Forecasting of Daily Gold Price using ARIMA-GARCH Hybrid Model,” J. Ekon. Pembang., vol. 19, no. 2, pp. 257–270, 2022, doi: 10.29259/jep.v19i2.13903.

M. Bildirici, I. Şahin Onat, and Ö. Ö. Ersin, “Forecasting BDI Sea Freight Shipment Cost, VIX Investor Sentiment and MSCI Global Stock Market Indicator Indices: LSTAR-GARCH and LSTAR-APGARCH Models,” Mathematics, vol. 11, no. 5, 2023, doi: 10.3390/math11051242.

N. Ben Cheikh, Y. Ben Zaied, and J. Chevallier, “Asymmetric volatility in cryptocurrency markets: New evidence from smooth transition GARCH models,” Financ. Res. Lett., vol. 35, pp. 0–13, 2020, doi: 10.1016/j.frl.2019.09.008.

C.-U. Lstargarchlstm, “Analyzing Crude Oil Prices under the Impact of,” pp. 1–18, 2020.

E. P. Setiawan, “Analisis Potensi dan Risiko Investasi Cryptocurrency di Indonesia,” J. Manaj. Teknol., vol. 19, no. 2, pp. 130–144, 2020, doi: 10.12695/jmt.2020.19.2.2.




DOI: http://dx.doi.org/10.30829/zero.v7i1.17149

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Department of Mathematics
Faculty of Science and Technology
Universitas Islam Negeri Sumatera Utara Medan 

Email: mtk.saintek@uinsu.ac.id