APPLICATION OF HYBRID LSTAR-GARCH MODEL WITH EXPECTED TAILL LOSS IN PREDICTING THE PRICE MOVEMENT OF BITCOIN CRYPTOCURRENCY AGAINST RUPIAH CURRENCY
Abstract
Keywords
Full Text:
PDFReferences
F. Chana, D. Marinovab, and M. Mcaleera, “STAR-GARCH Models of Ecological Patents in the USA,” pp. 526–531, 1997.
M. A. Maliki, I. Cholissodin, and N. Yudistira, “Prediksi Pergerakan Harga Cryptocurrency Bitcoin terhadap Mata Uang Rupiah menggunakan Algoritme LSTM,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 7, pp. 3259–3268, 2022.
G. Kresnawati, B. Warsito, and A. Hoyyi, “Peramalan Indeks Harga Saham Gabungan Dengan Metode Logistic Smooth Transition Autoregressive (Lstar),” J. Gaussian, vol. 7, no. 1, pp. 84–95, 2018, doi: 10.14710/j.gauss.v7i1.26638.
A. H. A. Zili, Derick Hendri, and S. A. A. Kharis, “Peramalan Harga Saham Dengan Model Hybrid Arima-Garch dan Metode Walk Forward,” J. Stat. dan Apl., vol. 6, no. 2, pp. 341–354, 2022, doi: 10.21009/jsa.06218.
M. Odelia, D. A. I. Maruddani, and H. Yasin, “PERAMALAN HARGA SAHAM DENGAN METODE LOGISTIC SMOOTH TRANSITION AUTOREGRESSIVE (LSTAR) (Studi Kasus pada Harga Saham Mingguan PT. Bank Mandiri Tbk Periode 03 Januari 2011 sampai 24 Desember 2018),” J. Gaussian, vol. 9, no. 4, pp. 391–401, 2020, doi: 10.14710/j.gauss.v9i4.29403.
U. Azmi and W. H. Syaifudin, “Peramalan Harga Komoditas Dengan Menggunakan Metode Arima-Garch,” J. Varian, vol. 3, no. 2, pp. 113–124, 2020, doi: 10.30812/varian.v3i2.653.
N. Salwa, N. Tatsara, R. Amalia, and A. F. Zohra, “Peramalan Harga Bitcoin Menggunakan Metode ARIMA (Autoregressive Integrated Moving Average),” J. Data Anal., vol. 1, no. 1, pp. 21–31, 2018, doi: 10.24815/jda.v1i1.11874.
I. G. M. H. PRATAMA, I. W. SUMARJAYA, and N. L. P. SUCIPTAWATI, “Peramalan Harga Bitcoin Dengan Metode Smooth Transition Autoregressive (Star),” E-Jurnal Mat., vol. 11, no. 2, p. 100, 2022, doi: 10.24843/mtk.2022.v11.i02.p367.
N. B. Yolanda, N. Nainggolan, and H. A. H. Komalig, “Penerapan Model ARIMA-GARCH Untuk Memprediksi Harga Saham Bank BRI,” J. MIPA, vol. 6, no. 2, p. 92, 2017, doi: 10.35799/jm.6.2.2017.17817.
N. F. F. Rizani, M. Mustafid, and S. Suparti, “Penerapan Metodeexpected Shortfallpada Pengukuran Risiko Investasi Saham Dengan Volatilitas Model Garch,” J. Gaussian, vol. 8, no. 1, pp. 184–193, 2019, doi: 10.14710/j.gauss.v8i1.26644.
D. M. H. Ilmawan, B. Warsito, and S. Sugito, “Penerapan Artificial Neural Network Dengan Optimasi Modified Artificial Bee Colony Untuk Meramalkan Harga Bitcoin Terhadap Rupiah,” J. Gaussian, vol. 9, no. 2, pp. 135–142, 2020, doi: 10.14710/j.gauss.v9i2.27815.
G. A. M. A. Putri, N. P. N. Hendayanti, and M. Nurhidayati, “Pemodelan Data Deret Waktu Dengan Autoregressive Integrated Moving Average Dan Logistic Smoothing Transition Autoregressive,” J. Varian, vol. 1, no. 1, p. 54, 2017, doi: 10.30812/varian.v1i1.50.
M. S. M. Dadan Kusnandar, “Pemodelan Dan Peramalan Volatilitas Saham Menggunakan Model Integrated Generalized Autoregressive Conditional Heteroscedasticity,” Bimaster Bul. Ilm. Mat. Stat. dan Ter., vol. 9, no. 1, pp. 79–86, 2020, doi: 10.26418/bbimst.v9i1.38669.
A. S. G. Models, “On Evaluating the Volatility of Nigerian Gross Domestic Product Using Smooth Transition,” vol. 9, no. 3, pp. 102–106, 2021, doi: 10.12691/ajams-9-3-4.
P. Kartikasari and H. Kuswanto, “MODEL LSTAR ( LOGISTIK SMOOTHING TRANSITIONAUTOREGRESSIVE ) UNTUK PEMODELAN RETURN SAHAMPADA PT . BANK RAKYAT INDONESIA DAN PT . BANK NEGARA INDONESIA ( LSTAR MODEL ( LOGISTIK SMOOTHING TRANSITION AUTOREGRESSIVE ) FOR MODELLINGSTOCK MARKET RETURN AT PT . BANK RAKYAT INDONESIA AND PT . BANK NEGARAINDONESIA ),” no. November, pp. 132–144, 2014.
P. Kartikasari and H. Kuswanto, “Model Lstar ( Logistik Smoothing Transitionautoregressive ) Untuk Pemodelan Return Sahampada Pt . Bank Rakyat Indonesia Dan Pt . Bank Negara Indonesia ( Lstar Model ( Logistik Smoothing Transition Autoregressive ) for Modellingstock Market Return At Pt .,” Pros. Semin. Nas. Mat. Univ. Jember, no. November, pp. 132–144, 2014.
B. N. Chandra, N. N. Debataraja, and N. Imro’ah, “Model Logistic Smooth Transition Autoregressive Pada Produksi Kelapa Sawit,” Bul. Ilm. Mat. Stat. dan Ter., vol. 10, no. 3, pp. 369–378, 2021.
P. H. RS Faustina, A Agoestanto, “Model Hybrid ARIMA-GARCH Untuk Estimasi Volatilitas harga Emas,” UNNES J. Math., vol. 6, no. 1, pp. 11–24, 2017.
S. N. Brilliantya, K. Nisa, S. Saidi, and E. Setiawan, “Model EGARCH dan TGARCH untuk Mengukur Volatilitas Asimetris Return Saham,” vol. 03, no. 02, pp. 45–52, 2022.
I. Indriyanti, N. Ichsan, H. Fatah, T. Wahyuni, and E. Ermawati, “Implementasi Orange Data Mining Untuk Prediksi Harga Bitcoin,” J. Responsif Ris. Sains dan Inform., vol. 4, no. 2, pp. 118–125, 2022, doi: 10.51977/jti.v4i2.762.
S. Setyowibowo, M. As’ad, S. Sujito, and E. Farida, “Forecasting of Daily Gold Price using ARIMA-GARCH Hybrid Model,” J. Ekon. Pembang., vol. 19, no. 2, pp. 257–270, 2022, doi: 10.29259/jep.v19i2.13903.
M. Bildirici, I. Şahin Onat, and Ö. Ö. Ersin, “Forecasting BDI Sea Freight Shipment Cost, VIX Investor Sentiment and MSCI Global Stock Market Indicator Indices: LSTAR-GARCH and LSTAR-APGARCH Models,” Mathematics, vol. 11, no. 5, 2023, doi: 10.3390/math11051242.
N. Ben Cheikh, Y. Ben Zaied, and J. Chevallier, “Asymmetric volatility in cryptocurrency markets: New evidence from smooth transition GARCH models,” Financ. Res. Lett., vol. 35, pp. 0–13, 2020, doi: 10.1016/j.frl.2019.09.008.
C.-U. Lstargarchlstm, “Analyzing Crude Oil Prices under the Impact of,” pp. 1–18, 2020.
E. P. Setiawan, “Analisis Potensi dan Risiko Investasi Cryptocurrency di Indonesia,” J. Manaj. Teknol., vol. 19, no. 2, pp. 130–144, 2020, doi: 10.12695/jmt.2020.19.2.2.
DOI: http://dx.doi.org/10.30829/zero.v7i1.17149
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Department of Mathematics
Faculty of Science and Technology
Universitas Islam Negeri Sumatera Utara Medan
Email: mtk.saintek@uinsu.ac.id