ESTIMASI BAYESIAN PADA PARAMETER HUKUM MOTALITA GOMPERTZ MENGGUNAKAN ALGORITMA METROPOLIS-HASTINGS
Abstract
Tingkat mortalitas merupakan salah satu hal penting untuk menentukan nilai premi pada suatu produk asuransi. Pada umumnya, perusahaan asuransi menggunakan tabel mortalitas deterministik yang dibangun dari data kematian masa lalu. Namun pada kenyataannya, tingkat mortalitas dipengaruhi oleh faktor-faktor ketidakpastian yang menyebabkan tingkat mortalitas tersebut berubah secara stokastik. Pada penelitian ini, akan dikaji pengaruh mortalitas stokastik dalam mengestimasi parameter hukum mortalitas Gompertz menggunakan pendekatan analisis Bayesian sehingga parameter-parameter pada hukum mortalitas Gompertz tidak lagi berbentuk konstanta, namun memiliki distribusi. Estimasi Bayesian dilakukan dengan asumsi distribusi prior adalah normal. Pelibatan unsur stokasik dilakukan dengan menambahkan gangguan mortalitas yang dinyatakan dalam persentase dari force of mortality dengan rentang . Simulasi numerik dilakukan menggunakan Markov Chain Monte Carlo (MCMC) dengan Algoritma Mettopolis-Hastings. Hasil simulasi menunjukkan bahwa dengan l0 = 100000 dan l111 = 0, diperoleh nilai m* berdistribusi normal dengan mean 0.001665164 dan variansi 9,525 × 10-9 dan C* berdistribusi normal dengan mean 1.081264461 dan variansi 6,312134 × 10-7. Hasil ini dapat digunakan sebagai kerangka kerja yang lebih akurat untuk menganalisis keandalan, ketahanan, dan pembiayaan dalam dunia aktuaria, serta memberikan dasar yang lebih baik untuk pengelolaan risiko perusahaan.
Abstract
The mortality rate is a crucial factor in determining the premium value for an insurance product. Typically, insurance companies use deterministic mortality tables that are built from past death data. However, in reality, the mortality rate is influenced by various uncertainty factors that cause it to change stochastically. In this research, we will study the influence of stochastic mortality in estimating the parameters of the Gompertz mortality law using a Bayesian analysis approach. This will enable us to model the parameters in the Gompertz mortality law as a distribution rather than a constant value. Bayesian estimation is carried out assuming the prior distribution is normal. The involvement of stochastic elements is carried out by adding mortality disturbance ∈ which is expressed as a percentage of the force of mortality with a range of . Numerical simulations were carried out using Markov Chain Monte Carlo (MCMC) with the Mettopolis-Hastings Algorithm. The simulation results show that with l0 = 100000 and l111 = 0, the m* value is normally distributed with a mean of 0.001665164 dan and a variance of 9,525 × 10-9 and C* is normally distributed with a mean of 1.081264461 and a variance of 6,312134 × 10-7. These results can be used as a more accurate framework for analyzing reliability, resilience and financing in the actuarial world, as well as providing a better basis for enterprise risk management.
Keywords
Full Text:
PDF (Indonesian)References
Abo-Kasem, O. E., Abdelgaffar, A., Al Mutairi, A., Khashab, R. H., & Abu El Azm, W. S. (2023). Classical and bayesian estimation for gompertz distribution under the unified hybrid censored sampling with application. AIP Advances, 13(11). https://doi.org/10.1063/5.0174543
Akhmarov, A. V., Natalson, A. V., & Temirova, A. B. (2023). Change management in the era of digital transformation: how companies can effectively adapt to new business models. Ekonomika I Upravlenie: Problemy, Resheniya. https://api.semanticscholar.org/CorpusID:264509468
Al-Shomrani, A. A. (2023). An improvement in maximum likelihood estimation of the gompertz distribution parameters. Journal of Statistical Theory and Applications, 22(1–2), 98–115. https://doi.org/10.1007/s44199-023-00057-5
Bowers, N. L. (1986). Actuarial Mathematics. Society of Actuaries. https://search.worldcat.org/title/1023979578
Casarin, R., Grassi, S., Ravazzolo, F., & Dijk, H. K. van. (2014). Parallel sequential monte carlo for efficient density combination: the deCo matlab toolbox. https://ideas.repec.org/p/bno/worpap/2014_11
Dahl, M. (2004). Stochastic mortality in life insurance: market reserves and mortality-linked insurance contracts. Insurance: Mathematics and Economics, 35(1), 113–136. https://doi.org/10.1016/j.insmatheco.2004.05.003
Dougherty, C. (2014). Introduction to Econometrics. https://global.oup.com/academic/product/introduction-to-econometrics-9780199676828?cc=id〈=en&
Fanconi, C., Hond, A. de, Peterson, D., Capodici, A., & Hernandez-Boussard, T. (2023). A bayesian approach to predictive uncertainty in chemotherapy patients at risk of acute care utilization. EBio Medicine, 92(104632), 1–10. https://doi.org/10.1016/j.ebiom.2023.104632
Feroze, N., & Aslam, M. (2013). On bayesian estimation and predictions for two-component mixture of the gompertz distribution. Journal of Modern Applied Statistical Methods, 12(2), 269–292. https://doi.org/10.22237/jmasm/1383279300
Financials, C., Santos, M., & Richman, V. (2018). Annual changes in mortality rates and related effects on life insurance annual changes in mortality rates and related effects on life insurance company financials. Journal of Applied Financial Research, 60–72. https://www.researchgate.net/publication/329553957_Annual_Changes_in_Mortality_Rates_and_Related_Effects_on_Life_Insurance_Company_Financials
Garg, M. L., Rao, B. R., & Redmond, C. K. (1970). Maximum-likelihood estimation of the parameters of the gompertz survival function. Journal of the Royal Statistical Society, 19(2), 152–159. https://doi.org/10.2307/2346545
Hegazy, M. A., El-Kader, R. E. A., El-Helbawy, A. A., & Al-Dayian, G. R. (2021). Bayesian estimation and prediction of discrete gompertz distribution. Journal of Advances in Mathematics and Computer Science, 36(2), 1–21. https://doi.org/10.9734/jamcs/2021/v36i230335
Hesse, C. A., Boyetey, D. B., & Ashoagbor, A. A. (2022). Comparing the distributions of aggregate claims for different probability distributions under reinsurance arrangements. Advances and Applications in Statistics, 73, 75–98. https://doi.org/10.17654/0972361722011
Huang, F., Maller, R., & Ning, X. (2020). Modelling life tables with advanced ages: Aan extreme value theory approach. Insurance: Mathematics and Economics, 93, 95–115. https://doi.org/10.1016/j.insmatheco.2020.04.004
Ibrahimpasic, B. (2023). Vjerojatnost dozivljenja i smrtiza dvije i vise osoba kod obracuna zivotnog osiguranja. Bernadin Ibrahimpasic, 9(13), 67–75. https://www.ceeol.com/search/article-detail?id=1176979
Koop, G. (2003). Bayesian econometrics. Wiley, Chichester. https://www.wiley.com/en-us/Bayesian+Econometrics-p-9780470845677
Lenart, A. (2012). The gompertz distribution and maximum likelihood estimation of its parameters. https://www.demogr.mpg.de/en/publications_databases_6118/publications_1904/mpidr_working_papers/the_gompertz_distribution_and_maximum_likelihood_estimation_of_its_parameters_a_revision_4345
Liu, X. (2008). Stochastic mortality modelling [Universitas Toronto]. https://tspace.library.utoronto.ca/bitstream/1807/11117/1/Liu_Xiaoming_Jr_200803_PhD_thesis.pdf
Miasary, S. D. (2022). Annual premium determination for joint life insurance with de moivre and gompertz’s mortality laws. Square : Journal of Mathematics and Mathematics Education, 4(2), 117–123. https://doi.org/10.21580/square.2022.4.2.13212
Obeidat, M., Al-Nasser, A., & Al-Omari, A. I. (2020). Estimation of generalized gompertz distribution parameters under ranked-set sampling. Journal of Probability and Statistics, 1–14. https://doi.org/10.1155/2020/7362657
Paramasivan, C., & Rajaram, S. (2016). Micro insurance portfolio of public and private sector insurance companies. IJSSIR: International Journal of Social Science & Interdisciplinary Research, 5(3), 72–77. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4411639
Putra, D. A., Fitriyati, N., & Mahmudi, M. (2019). Fit of the 2011 indonesian mortality table to gompertz law and makeham law using maximum likelihood estimation. InPrime: Indonesian Journal of Pure and Applied Mathematics, 1(2), 68–76. https://doi.org/10.15408/inprime.v1i2.13276
Risalah, M., & Rahmani, N. A. B. (2022). Actuarial aspects in life insurance. Jurnal Ekonomi, Manajemen, Akuntansi Dan Keuangan, 3(3), 1017–1024. https://doi.org/10.53697/emak.v3i3.644
Robert, C. P. (2015). The metropolis– hastings algorithm. Wiley StatsRef: Statistics Reference Online, 1–15. https://doi.org/10.1002/9781118445112.stat07834
Sen, S., Kundu, D., & Das, K. (2023). A flexible bayesian variable selection approach for modeling interval data. Statistical Methods & Applications. https://doi.org/10.1007/s10260-023-00727-9
Tai, T. H., & Noymer, A. (2018). Models for estimating empirical gompertz mortality: with an application to evolution of the gompertzian slope. Population Ecology, 60, 171–184. https://doi.org/10.1007/s10144-018-0609-6
Trivedi, S. (2022). A risk management framework for life insurance companies. Journal of Corporate Governance, Insurance, and Risk Management, 9(1), 89–111. https://doi.org/10.51410/jcgirm.9.1.6
Wong, J. S. ., Forster, J. J., & Smith, P. W. F. (2018). Bayesian mortality forecasting with overdispersion. Insurance: Mathematics and Economics, 83, 206–221. https://doi.org/10.1016/j.insmatheco.2017.09.023
DOI: http://dx.doi.org/10.30821/axiom.v12i2.18061
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Yulinda Eliskar, Rustam Rustam, Nina Fitriyati, Khaerudin Saleh
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
p-ISSN: 2087-8249 | e-ISSN: 2580-0450
Indexed by:
AXIOM : Jurnal Pendidikan dan Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.