IMPLEMENTATION OF TRANSPORTATION METHODS IN OPTIMIZING THE DISTRIBUTION OF HIJAB PRODUCTS AT AYASHA HIJAB STORE

Robiatul Adawiya, Anriany Casanova, Mufida Awalia Putri, Muhammad Najib Mubarrok, Liansya Ayu Sariperkasi

Abstract


The problem of transportation costs is a problem faced by many companies, especially those that distribute goods from various places to various destinations, and Ayasha Hijab's company is no exception. The company has 3 stores and supplies Bella square veils from 3 different warehouses. This of course has an impact on the company's expenses considering the distance and the increasing number of requests. The researcher tries to find a solution by using the linear program transportation solution method. Researchers processed data from the Ayasha Hijab Company with the NWC model and then second processing to get optimal results with stepping stones and MODI. As a result, the optimal cost for the stepping stone and MODI models is IDR 5.125.000. The Stepping Stone and MODI methods get the optimal solution and can save costs around IDR. 3.350.000 from the NWC method with a cost of IDR. 8.475.000. Secondary data obtained from the calculation of "Ayasha Hijab Store" has a minimum cost of around IDR. 10.000.000. So that the Stepping Stone method and the MODI method can save Bella Square distribution costs of IDR. 4.875.000.

Keywords


Linear programming; North West Corner (NWC); Stepping stone; MODI; Ayasha Hijab Store; Transportation method

Full Text:

PDF

References


Abdullah, A. A. (2020). Etnomatematika: Eksplorasi transformasi geometri pada ragam hias cagar budaya khas Yogyakarta. Jurnal Ilmiah Soulmath : Jurnal Edukasi Pendidikan Matematika, 8(2), 131–138. https://doi.org/10.25139/smj.v8i2.3107

Ahmad, Z., Hamedani, G. G., & Butt, N. S. (2019). Recent developments in distribution theory: A brief survey and some new generalized classes of distributions. Pakistan Journal of Statistics and Operation Research, 15(1), 87–110. https://doi.org/10.18187/pjsor.v15i1.2803

Anwar, C. (2001). Management and technology of rubber cultivation. Rubber Research Center.

Asaolu, T. O., & Nassar, M. L. (2007). Essentials of management accounting and financial management. Cedar Productions.

Briend, A., Darmon, N., Ferguson, E., & Erhardt, J. G. (2003). Linear programming: A mathematical tool for analyzing and optimizing children’s diets during the complementary feeding period. Journal of Pediatric Gastroenterology and Nutrition, 36(1), 12–22. https://doi.org/10.1097/00005176-200301000-00006

Cahdriyana, R. A., Richardo, R., Fahmi, S., & Setyawan, F. (2019). Pseudo-thinking process in solving logic problem. Journal of Physics: Conference Series, 1188(1). https://doi.org/10.1088/1742-6596/1188/1/012090

Dantzig, G. B. (1963). Linear programming and extensions. Princeton University Press. https://doi.org/https://doi.org/10.1515/9781400884179.

Hanne, T., & Dornberger, R. (2016). Transportation problems. International Series in Operations Research & Management Science, 244, 43–71. https://doi.org/https://doi.org/10.1007/978-3-319-40722-7_3

Hornby, A. . (2002). Oxford advanced learner’s dictionary (7th ed.). Oxford University Press.

Iheonu, N., & Inyama, S. (2016). On the optimization of transportation problem. British Journal of Mathematics & Computer Science, 13(4), 1–11. https://doi.org/10.9734/bjmcs/2016/17279

Kartika, R., Taufik, N., & Nur Lestari, M. (2020). Distribution optimization with the transportation method. Jurnal Sains Manajemen Dan Bisnis Indonesia, 10(2), 246–254.

Khan, M. A. (2014). Transportation cost optimization using linear programming. International Conference on Mechanical, Industrial and Energy Engineering, 1–5.

Kurniawan, M., & Haryati, N. (2017). Analysis of business development strategy of soursop juice beverage. Industria: Jurnal Teknologi Dan Manajemen Agroindustri, 6(2), 97–102. https://doi.org/10.21776/ub.industria.2017.006.02.6

Morgan, B. (2021). Overview of optimization theory and the four main types of optimization problems. Towards Data Science.

Pasaribu, M. (2019). Implementation of northwest corner transportation method for optimizing item shipping cost. Jurnal Teknologi Komputer, 13(1), 1–4.

Prasad, A. K., & Singh, D. R. (2020). Modified least cost method for solving transportation problem. Proceedings on Engineering Sciences, 2(3), 269–280. https://doi.org/10.24874/PES02.03.006

Salami, A. (2014). Application of transportation linear programming algorithms to cost reduction in Nigeria soft drinks industry. International Journal of Economics and Management Engineering, 8(2), 416–422. https://doi.org/https://doi.org/10.5281/zenodo.1090637

Schulze, M. A. (2001). Linear programming for optimization. Proteins: Structure, Function and Genetics, 45(3), 241–261. https://doi.org/10.1002/prot.1145

Shih, W. (1987). Modified stepping-stone method as a teaching aid for capacitated transportation problems. Decision Sciences, 18(4), 662–676. https://doi.org/10.1111/j.1540-5915.1987.tb01553.x

Sitepu, P. B., & Harianja, A. P. (2018). Implementasi penukaran uang rupiah dengan menggunakan algortima greedy. Jurnal Teknik Indormatika Unika St. Thomas, 03(02), 2548–1916. https://doi.org/https://doi.org/10.17605/jti.v3i2.302

Stéphane, B., Gábor, L., & Pascal, M. (2013). The transportation method. In Concentration Inequalities: A Nonasymptotic Theory of Independence. Oxford Academic. https://doi.org/https://doi.org/10.1093/acprof:oso/9780199535255.003.0008

Sudirga, R. S. (2017). Dua hasil optimal dalam penyelesaian persoalan transportasi dengan assignment method, vam and modi, northwest corner and stepping-stone. Business Management Journal, 8(1), 56–70. https://doi.org/10.30813/bmj.v8i1.617

Tjiptono. (2006). Service management. BPFE.

Vieira, B. S., Mayerle, S. F., Campos, L. M. S., & Coelho, L. C. (2020). Optimizing drinking water distribution system operations. European Journal of Operational Research, 280(3), 1035–1050. https://doi.org/https://doi.org/10.1016/j.ejor.2019.07.060

Wulan, E. R., Ramdhani, M. A., & Indriani. (2018). Determine the optimal solution for linear programming with interval coefficients. IOP Conference Series: Materials Science and Engineering, 288(1). https://doi.org/10.1088/1757-899X/288/1/012061




DOI: http://dx.doi.org/10.30821/axiom.v11i2.13743

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Robiatul Adawiya, Anriany Casanova, Mufida Awalia Putri, Muhammad Najib Mubarrok, Liansya Ayu Sariperkasi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

p-ISSN: 2087-8249 | e-ISSN: 2580-0450

 Indexed by:

          

 

 

 

 

 Creative Commons License

AXIOM : Jurnal Pendidikan dan Matematika is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.