Klasifikasi User Berdasarkan Trafik Http/Https Menggunakan Metode Naïve Bayes
Abstract
Along with the times and accompanied by advances in information and communication technology, it is undeniable that at this time all activities use information technology. One of the activities is to use the internet. The research will conduct a classification based on internet usage data obtained through questionnaires using data mining techniques. The attributes that will be used in doing the classification are Name, Age, Gender, Last Education. The method used is the Naïve Bayes method, which is one of the classification techniques in data mining. Based on the research conducted, it was concluded that based on internet user data used as training data, the Naïve Bayes method succeeded in classifying 32 data from 50 data tested. So the Naïve Bayes method succeeded in predicting the magnitude of the percentage of accuracy by 64%.
Keywords : Data Mining, Classification, Naïve Bayes
Full Text:
PDFReferences
H. Muhamad, C. A. Prasojo, N. A. Sugianto, L. Surtiningsih, and I. Cholissodin, “Optimasi Naïve Bayes Classifier Dengan Menggunakan Particle Swarm Optimization Pada Data Iris,” J. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 3, p. 180, 2017, doi: 10.25126/jtiik.201743251.
D. Sartika and D. I. Sensuse, “Perbandingan Algoritma Klasifikasi Naive Bayes, Nearest Neighbour, dan Decision Tree pada Studi Kasus Pengambilan Keputusan Pemilihan Pola Pakaian,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 3, no. 2, pp. 151–161, 2017, [Online]. Available: https://jurnal.mdp.ac.id/index.php/jatisi/article/view/78.
Y. Mardi, “Data Mining : Klasifikasi Menggunakan Algoritma C4.5,” Edik Inform., vol. 2, no. 2, pp. 213–219, 2017, doi: 10.22202/ei.2016.v2i2.1465.
D. P. Utomo and M. Mesran, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,” J. Media Inform. Budidarma, vol. 4, no. 2, p. 437, 2020, doi: 10.30865/mib.v4i2.2080.
R. S. Sasmita, “Research & Learning in Primary Education Pemanfaatan Internet Sebagai Sumber Belajar,” J. Pendidik. Dan Konseling, vol. 1, pp. 1–5, 2020.
I. Amarini, “Pencegahan Dampak Negatif Perkembangan Teknologi Informasi Terhadap Pengguna Internet,” Kosmik Huk., vol. 18, no. 1, 2018, doi: 10.30595/kosmikhukum.v18i1.2340.
D. P. Musdansi and R. Nazli, “Pengembangan Buku Ajar Statistika Berbasis Spss Sebagai Self Education Mahasiswa,” AdMathEdu J. Ilm. Pendidik. Mat. Ilmu Mat. dan Mat. Terap., vol. 8, no. 2, p. 147, 2018, doi: 10.12928/admathedu.v8i2.12342.
Ainurrohmah, “Akurasi Algoritma Klasifikasi pada Software Rapidminer dan Weka,” Prisma, vol. 4, pp. 493–499, 2021, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/.
D. Yanti, “Perencanaan Prototipe Sistem Informasi Pariwisata Berbasis Web Di Kabupaten Dairi Sumatera Utara,” vol. 7, no. 2, pp. 44–68, 2018
DOI: http://dx.doi.org/10.30829/algoritma.v7i1.15698
Refbacks
- There are currently no refbacks.
Indexing:
|
Algoritma: Jurnal Ilmu Komputer dan Informatika
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.