DIACRITIC-AWARE ALIGNMENT AND CLASSIFICATION IN ARABIC SPEECH: A FUSION OF FUZTPI AND ML MODELS
Abstract
Keywords
Full Text:
PDFReferences
Aboalnaser, S. A. (2019). Machine learning algorithms in arabic text classification: A review. In 2019 12th international conference on developments in esystems engineering (dese) (pp. 290-295).
Aldarmaki, H., & Ghannam, A. (2023). Diacritic recognition performance in arabic asr. arXiv preprint arXiv:2302.14022 .
Anguera, X., Perez, N., Urruela, A., & Oliver, N. (2011). Automatic synchronization of electronic and audio books via tts alignment and silence filtering. In 2011 ieee international conference on multimedia and expo (pp. 1-6).
Baer, T., & Kamalnath, V. (2017). Controlling machine-learning algorithms and their biases. McKinsey Insights.
Belete, D. M., & Huchaiah, M. D. (2022). Grid search in hyperparameter optimization of machine learning models for prediction of hiv/aids test results. International Journal of Computers and Applications, 44 (9), 875-886.
Bhogale, K., Raman, A., Javed, T., Doddapaneni, S., Kunchukuttan, A., Kumar, P., & Khapra, M. M. (2023). Effectiveness of mining audio and text pairs from public data for improving asr systems for low-resource languages. In Icassp 2023-2023 ieee international conference on acoustics, speech and signal processing (icassp) (pp. 1-5).
Chan, A. P., Chan, D. W., & Yeung, J. F. (2009). Overview of the application of "fuzzy techniques" in construction management research. Journal of construction engineering and management , 135 (11), 1241-1252.
Dean, D., Sridharan, S., Vogt, R., & Mason, M. (2010). The qut-noise-timit corpus for evaluation of voice activity detection algorithms. In Proceedings of the 11th annual conference of the international speech communication association (pp. 3110-3113).
Dutoit, T. (1997). An introduction to text-to-speech synthesis (Vol. 3). Springer Science & Business Media.
Gu, J., & Lu, S. (2021). An effective intrusion detection approach using svm with na¨ıve bayes feature embedding. Computers & Security, 103 , 102158.
Herrera-Viedma, E., Cabrerizo, F. J., Kacprzyk, J., & Pedrycz, W. (2014). A review of soft consensus models in a fuzzy environment. Information Fusion, 17 , 4-13.
Humayun, M. A., Yassin, H., & Abas, P. E. (2023). Dialect classification using acoustic and linguistic features in arabic speech. IAES International Journal of Artificial Intelligence, 12 (2), 739.
Islam, M. S., Jubayer, F. E. M., & Ahmed, S. I. (2017). A support vector machine mixed with tf-idf algorithm to categorize bengali document. In 2017 international conference on electrical, computer and communication engineering (ecce) (pp. 191-196).
Jiang, M., Liang, Y., Feng, X., Fan, X., Pei, Z., Xue, Y., & Guan, R. (2018). Text classification based on deep belief network and softmax regression. Neural Computing and Applications, 29 , 61-70.
Kim, S.-B., Han, K.-S., Rim, H.-C., & Myaeng, S. H. (2006). Some effective techniques for naive bayes text classification. IEEE transactions on knowledge and data engineering, 18 (11), 1457-1466.
Kostanyan, A. (2017). Fuzzy string matching with finite automat. In 2017 computer science and information technologies (csit) (p. 9-11). DOI: 10.1109/CSITechnol.2017.8312128
Kowsari, K., Jafari Meimandi, K., Heidarysafa, M., Mendu, S., Barnes, L., & Brown, D. (2019). Text classification algorithms: A survey. Information, 10 (4), 150.
Larbi, G. (2013). Voice search in the holy quran. In 2013 taibah university international conference on advances in information technology for the holy quran and its sciences (pp. 413-418).
Liew, C. S., Abbas, A., Jayaraman, P. P., Wah, T. Y., Khan, S. U., et al. (2016). Big data reduction methods: a survey. Data Science and Engineering , 1 (4), 265-284.
Liu, Z., Lv, X., Liu, K., & Shi, S. (2010). Study on svm compared with the other text classification methods. In 2010 second international workshop on education technology and computer science (Vol. 1, pp. 219-222).
Lokhande, N. N., Nehe, N. S., & Vikhe, P. S. (2012). Voice activity detection algorithm for speech recog- nition applications. In Ijca proceedings on international conference in computational intelligence (iccia2012), vol. iccia (Vol. 6, pp. 1-4).
Muhammad, W. M., Muhammad, R., Muhammad, A., & Martinez-Enriquez, A. (2010). Voice content matching system for quran readers. In 2010 ninth mexican international conference on artificial intelligence (pp. 148-153).
Qasim, H., & Abdulbaqi, H. A. (2022). Arabic speech recognition using deep learning methods: Literature review. In Aip conference proceedings (Vol. 2398, p. 050029).
Radzi, S. F. M., Karim, M. K. A., Saripan, M. I., Rahman, M. A. A., Isa, I. N. C., & Ibahim, M. J. (2021). Hyperparameter tuning and pipeline optimization via grid search method and tree-based automl in breast cancer prediction. Journal of Personalized Medicine, 11 (10), 978.
Ramırez, J., Segura, J. C., Benıtez, C., De La Torre, A., & Rubio, A. (2004). Efficient voice activity detection algorithms using long-term speech information. Speech communication, 42 (3-4), 271-287.
Singh, P. (2021). Deploy machine learning models to production. Cham, Switzerland: Springer .
Sun, Y., Li, Y., Zeng, Q., & Bian, Y. (2020). Application research of text classification based on random forest algorithm. In 2020 3rd international conference on advanced electronic materials, computers and software engineering (aemcse) (pp. 370-374).
Sundus, K., Al-Haj, F., & Hammo, B. (2019). A deep learning approach for arabic text classification. In 2019 2nd international conference on new trends in computing sciences (ictcs) (pp. 1-7).
Wahdan, A., Hantoobi, S., Salloum, S. A., & Shaalan, K. (2020). A systematic review of text classification research based on deep learning models in arabic language. Int. J. Electr. Comput. Eng, 10 (6), 6629-6643.
Xu, S., Li, Y., & Wang, Z. (2017). Bayesian multinomial na¨ıve bayes classifier to text classification. In Advanced multimedia and ubiquitous engineering: Mue/futuretech 2017 11 (pp. 347-352).
Yu, D., & Deng, L. (2016). Automatic speech recognition (Vol. 1). Springer.
Zhang, T., & Kuo, C.-C. J. (2001). Audio content analysis for online audiovisual data segmentation and classification. IEEE Transactions on speech and audio processing, 9 (4), 441-457.
DOI: http://dx.doi.org/10.30829/jistech.v8i2.17951
Refbacks
- There are currently no refbacks.
Current Indexing
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.







