Analisis Faktor yang Berhubungan dengan Computer Vision Syndrome pada Mahasiswa Kesehatan Masyarakat Universitas Muhammadiyah Surakarta
Abstract
Computer Vision Syndrome (CVS) has become a problem of visual discomfort that might impair a person's physical ability, mental health, and quality of life. The symptoms frequently occur due to a variety of inappropriate factors from the individual, environment, and Visual Display Terminal (VDT). Undergraduate students, as a productive age group with a strong link with VDT usage, are at high risk of developing CVS symptoms. This quantitative cross-sectional study aimed to identify factors associated with Computer Vision Syndrome among Public Health students at Universitas Muhammadiyah Surakarta. The sample consisted of students from the classes of 2022, 2023, and 2024, using a purposive proportional sampling method with a total of 230 people. This research used the Computer Vision Syndrome Questionnaire (CVS-Q) as an instrument and found that 73,5% of Public Health students suffered from CVS. The Chi-Square test showed a relationship between refractive errors (p=<0,001), use of glasses (p=<0,001; OR = 4,1), duration of laptop use (p=<0,001), and viewing distance from the laptop (p=0,017; OR = 0,46) with CVS. In this study, contact lens use was not associated with CVS (p=0,360). This study suggests that effective prevention and control measures should be developed to decrease the prevalence of Computer Vision Syndrome (CVS) among these undergraduate students, especially during their academic period.
Keywords
Full Text:
PDFReferences
Abudawood, G. A., Ashi, H. M., & Almarzouki, N. K. (2020). Computer Vision Syndrome among Undergraduate Medical Students in King Abdulaziz University, Jeddah, Saudi Arabia. Journal of Ophthalmology, 2020. https://doi.org/10.1155/2020/2789376
Al Dandan, O., Hassan, A., Al Shammari, M., Al Jawad, M., Alsaif, H. S., & Alarfaj, K. (2021). Digital Eye Strain Among Radiologists: A Survey-based Cross-sectional Study. Academic Radiolody, 28(8), 1142–1148.
Almuqrashi, A., Al-Noumani, H., Al-Abri, F., Al-Hinai, H., & Oraba, H. B. (2025). The Prevalence of Computer Vision Syndrome and Associated Factors among University Students in Oman : A Cross-Sectional Study. BMC Public Health, 25(1), 1–8. https://doi.org/https://doi.org/10.1186/s12889-025-23823-9
Alsaad, M., Shehadeh, A., Meqbil, J., Odat, I. Al, Jamous, S., Khawaldeh, T., Al Khreisha, H., Alkubaisi, F. A., & Al Odat, B. (2023). Computer vision syndrome among university students during the corona virus pandemic. International Journal of Public Health Science (IJPHS), 12(4), 1727–1735. https://doi.org/10.11591/ijphs.v12i4.22689
Altalhi, A. A., Khayyat, W., Khojah, O., Alsalmi, M., & Almarzouki, H. (2020). Computer Vision Syndrome Among Health Sciences Students in Saudi Arabia: Prevalence and Risk Factors. Cureus, 12(2), 2–7. https://doi.org/10.7759/cureus.7060
AOA. (2025). Computer Vision Syndrome. American Optometric Association. https://www.aoa.org/healthy-eyes/eye-and-vision-conditions/computer-vision-syndrome
Artime-Ríos, E., Crespo, M. S.-, Suárez-, A., & Sánchez-, S. F. (2022). Computer vision syndrome in healthcare workers using video display terminals : an exploration of the risk factors. Journal of Advanced Nursing, 78(7), 2095–2110. https://doi.org/10.1111/jan.15140
Azzahro, A. W., Murti, B., & Pamungkasari, E. P. (2023). Effect of Digital Device on Computer Vision Syndrome : Meta-Analysis. Journal of Epidemiology and Public Health, 8(2), 181–190.
Bhatnagar, K. R., Dixit, S. G., Pandey, L., Prakash, S., Shiromani, S., & Singh, K. (2024). Digital Eye Strain among Medical Students Associated with Shifting to E‑Learning during COVID-19 Pandemic : An Online Survey. Indian Journal of Ophthalmology, 72(1), 98–104. https://doi.org/10.4103/IJO.IJO_492_23
Ccami-Bernal, F., Soriano-Moreno, D. R., Romero-Robles, M. A., Barriga-Chambi, F., Tuco, K. G., Castro-Diaz, S. D., Nuñez-Lupaca, J. N., Pacheco-Mendoza, J., Galvez-Olortegui, T., & Benites-Zapata, V. A. (2024). Prevalence of Computer Vision Syndrome: A Systematic Review and Meta-Analysis. Journal Of Optometry, 17(1). https://doi.org/https://doi.org/10.1016/j.optom.2023.100482
Dahshan, D., & Rosdahl, J. A. (2022). Digital eye strain during the virtual interviews : evidence-based strategies for medical students. Digital Journal of Ophtalmology, 28(5), 22–25. https://doi.org/https://doi.org/10.5693/djo.01.2022.05.003
Kahal, F., Al Darra, A., & Torbey, A. (2025). Computer vision syndrome: a comprehensive literature review. Future Science OA, 11(1). https://doi.org/10.1080/20565623.2025.2476923
Lajmi, H., Choura, R., Achour, B. Ben, Doukh, M., Amin, Z., & Hmaied, W. (2021). Headache associated with refractive errors : Characteristics and risk factors. Revue Neurologique, 177(8), 947–954. https://doi.org/10.1016/j.neurol.2020.10.008
Lapa, I., Mateus, C., Rocha, N., & Rodrigues, M. A. (2023). Real-Time Blink Detection as an Indicator of Computer Vision Syndrome in Real-Life Settings : An Exploratory Study. International Journal of Environmental Research and Public Health, 20(5), 1–11. https://doi.org/https://doi.org/10.3390/ijerph20054569
Lema, A. K., & Anbesu, E. W. (2022). Computer vision syndrome and its determinants : A systematic review and meta-analysis. SAGE Open Medicine, 10, 1–19. https://doi.org/10.1177/20503121221142402
Lindo-Cano, E. F., García-Monge, V. A., Castillo-Cadillo, K. J., Sánchez-Tirado, E. A., Távara, I. M., & Morales, J. (2022). Computer-digital Vision Syndrome Among University Students of Lima City. The Open Public Health Journal, 15. https://doi.org/10.2174/18749445-v15-e2208104
Munif, A., Yuliana, Y., & Wardana, I. N. G. (2020). Hubungan Kelainan Refraksi Mata, Durasi, Dan Jarak Penggunaan Laptop Dengan Keluhan Kelelahan Mata Pada Mahasiswa PSSKPD Angkatan 2017-2018 Universitas Udayana. Jurnal Merdeka Udayana, 9(9), 18–25. https://doi.org/10.24843.MU.2020.V9.i10.P03
Mylona, I., Glynatsis, M. N., Floros, G. D., & Kandarakis, S. (2023). Spotlight on Digital Eye Strain. Clinical Optometry, 15, 29–36. https://doi.org/https://doi.org/10.2147/OPTO.S389114
Nariswari, I. G. A. R. C., Geriputri, N. N., & Andari, M. Y. (2022). Karakteristik Kelainan Refraksi Pada Anak Usia Sekolah Di Poli Mata RSUD Provinsi NTB Tahun 2019. Jurnal Kedokteran Unram, 11(4), 1252–1257. https://doi.org/10.29303/jku.v11i4.843
Noreen, K., Ali, K., Aftab, K., & Umar, M. (2021). Computer Vision Syndrome (CVS) and its Associated Risk Factors among Undergraduate Medical Students in Midst of COVID-19. Pakistan Journal of Ophthalmology, 37(1), 102–108. https://doi.org/10.36351/PJO.V37I1.1124
Nugroho, N. W., Lestari, M., Camelia, A., Andarini, D., Rosyada, A., Nandini, R. F., & Fujianti, P. (2022). Complaints of Computer Vision Syndrome in Telemarketing Workers at Bank X in Jakarta. The Indonesian Journal of Occupational Safety and Health, 11(2), 215–223. https://doi.org/10.20473/ijosh.v11i2.2022.215-223
Pavel, I. A., Bogdanici, C. M., Donica, V. C., Anton, N., Savu, B., Chiriac, C. P., Pavel, C. D., & Salavastru, S. C. (2023). Computer Vision Syndrome : An Ophthalmic Pathology of the Modern Era. Medicina, 59(2), 1–12. https://doi.org/https://doi.org/10.3390/medicina59020412
Purnamasari, S., Istichomah, B. A. Y., & Hamida, M. (2025). Faktor-Faktor yang Berkorelasi dengan Kelelahan Kerja pada Mahasiswa Kesehatan Masyarakat. Jurnal Ilmu Kesehatan Masyarakat, 14(2), 177–187. https://doi.org/https://doi.org/10.33221/jikm.v14i02.3764
Ramadhan, M. F., Eldrian, F., & Ashan, H. (2022). Gambaran Faktor Risiko Individual terhadap Kejadian Computer Vision Syndrome pada Mahasiswa Pendidikan Dokter Angkatan 2020 Universitas Baiturrahmah. Scientific Journal, 1(5), 368–375. https://doi.org/10.56260/sciena.v1i5.65
Safaryna, A. M., Kurniawati, D. P., Syahrul, F., & Prastyani, R. (2023). Risk Factors for Computer Vision Syndrome (CVS) among College Students during the Covid-19 Pandemic. Media Gizi Kesmas, 12(1), 200–206. https://doi.org/https://doi.org/10.20473/ mgk.v12i1.2023.200-206
Seguí, M. D. M., Cabrero-García, J., Crespo, A., Verdú, J., & Ronda, E. (2015). A Reliable And Valid Questionnaire Was Developed To Measure Computer Vision Syndrome At The Workplace. Journal of Clinical Epidemiology, 68(6), 662–673. https://doi.org/10.1016/j.jclinepi.2015.01.015
Simanjuntak, T. S. (2021). Uji Validitas dan Reliabilitas Kuesioner Computer Vision Syndrome (CVS-Q) Berbahasa Indonesia Pada Pekerja Yang Menggunakan Video Display Terminal. Universitas Indonesia.
Tika, R. M., & Fitria, L. (2023). Risk factors of computer vision syndrome in students during online learning period. International Journal of Public Health Science, 12(2), 875–881. https://doi.org/10.11591/ijphs.v12i2.22739
Wibawa, I. K. S., Permatananda, P. A. N. K., & Sedani, N. W. (2025). Identifikasi Computer Vision Syndrome (CVS) pada Pegawai Kantor Pemerintahan Kuta Utara, Bali. Jurnal Ners, 9(3), 3706–3712. https://doi.org/https://doi.org/10.31004/jn.v9i3.44531
Yee, N. L., Wong, L. F. W. B. M. R., Stewart, M. A., Haty, N. B. H., Singh, G. K. J., & Fuad, M. B. M. A. (2024). Prevalence, Knowledge and Associated Factors Related to Computer Vision Syndrome among Undergraduate Students. Florence Nightingale Journal of Nursing, 32(2), 118–125. https://doi.org/10.5152/FNJN.2024.23037
Zenbaba, D., Sahiledengle, B., Bonsa, M., Tekalegn, Y., Azanaw, J., & Chattu, V. K. (2021). Prevalence of Computer Vision Syndrome and Associated Factors among Instructors in Ethiopian Universities : A Web-Based Cross-Sectional Study. The Scientific World Journal. https://doi.org/10.1155/2021/3384332
DOI: http://dx.doi.org/10.30829/jumantik.v11i1.26830
Refbacks
- There are currently no refbacks.
Copyright (c) 2026 Khalisha Ramdhani Santoso

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




