Biolarvacide Leaves Powder of Mimosa Pudica L. on Mortality The Mosquito of Culex quinquefasciatus
Abstract
This research aims to determine the potential of Mimosa pudica L. as a larvicide for the mosquito of Culex quinquefasciatus. This research used an experimental method with a Completely Randomized Design (CRD), consisting of 6 treatments and 4 replications. The treatments consisted of treatment 0 gr/100 ml (control -); abate 0.4 gr/100 ml (control +); treatment (P1) 0.1 gr/100 ml; treatment (P2) 0.2 gr/100 ml; treatment (P3) 0.3 gr/100 ml; treatment (P4) 0.4 gr/100 ml. The parameter observed in this study was the mortality rate larvae instar III of Culex quinquefasciatus. The analysis used in this research was One Way Anova using a software application, namely SPSS statistics 22. To find out the potential of Mimosa pudica L. on the mortality rate larvae instar III of Culex quinquefasciatus larvae, it can be seen from the significance value. If the significance value is less than 0.01, it means that the treatment has a very significant effect, then further tests will be carried out. The further test used is the Duncan test. From the results of research that have been calculated using the One Way Anova test, it is proven that there is an effect of giving Mimosa pudica L.leaf’s powder on mortality larvae instar III of Culex quinquefasciatus. The effect that occurs can be seen in the significance value < 0.01, meaning that the leaves powder of Mimosa pudica L. has a very significant effect on the mortality larvae instar III of Culex quinquefasciatus. It can be concluded that the Mimosa pudica Lhad the potential as biolarvicide of Culex quinquefasciatus.
Keywords: Biolarvacide, Larvacide, Mimosa pudica L, Leaves Powder, Culex quinquefasciatus
Full Text:
PDFReferences
Ahmed, H., Ajat, M., Mahmood, R. I., Mansor, R., Razak, I. S. A., Al-Obaidi, J. R., Razali, N., Jaji, A. Z., Danmaigoro, A. & Bakar, M. Z. A. (2021). LC-MS/MS proteomic study of MCF-7 cell treated with dox and dox-loaded calcium carbonate nanoparticles revealed changes in proteins related to glycolysis, actin signalling, and energy metabolism. Biology, 10(9). https://doi.org/10.3390/biology10090909
Alhag, S. K., Al-Mekhlafi, F. A., Abutaha, N., Abd Al Galil, F. M. & Wadaan, M. A. (2021). Larvicidal potential of gold and silver nanoparticles synthesized using Acalypha fruticosa leaf extracts against Culex pipiens (Culicidae: Diptera). Journal of Asia-Pacific Entomology, 24(1), 184–189. https://doi.org/10.1016/j.aspen.2020.12.007
Ananda, A. A. & Rustam, R. (2023). The several of Jengkol peel extract (Pithecellobium lobatum Benth) against corn armyworm (Spodoptera frugiperda J. E. Smith) in the laboratory. International Journal of Science and Research Archive, 9(1), 577–583. https://doi.org/10.30574/ijsra.2023.9.1.0458
Aristri, M. A., Sari, R. K., Lubis, M. A. R., Laksana, R. P. B., Antov, P., Iswanto, A. H., Mardawati, E., Lee, S. H., Savov, V., Kristak, L. & Papadopoulos, A. N. (2023). Eco-Friendly Tannin-Based Non-Isocyanate Polyurethane Resins for the Modification of Ramie (Boehmeria nivea L.) Fibers. Polymers, 15(6). https://doi.org/10.3390/polym15061492
Babin, A., Gatti, J. L. & Poirié, M. (2023). Bacillus thuringiensis bioinsecticide influences Drosophila oviposition decision. Royal Society Open Science, 10(8), 1–11. https://doi.org/10.1098/rsos.230565
Baskar, K., Chinnasamy, R., Pandy, K., Venkatesan, M., Sebastian, P. J., Subban, M., Thomas, A., Kweka, E. J. & Devarajan, N. (2020). Larvicidal and histopathology effect of endophytic fungal extracts of Aspergillus tamarii against Aedes aegypti and Culex quinquefasciatus. Heliyon, 6(10), e05331. https://doi.org/10.1016/j.heliyon.2020.e05331
Chang, B. H., Qiang, B., Li, S., Ullah, H., Hao, K., McNeill, M. R., Rajput, A., Raza, A., Huang, X. & Zhang, Z. (2020). Inhibitory effect of genistein and PTP1B on grasshopper Oedaleus asiaticus development. Arthropod-Plant Interactions, 14(4), 441–452. https://doi.org/10.1007/s11829-020-09757-6
Dai, D. N., ChungT. Nguyen, Huong, L. T., Hung, N. H., Chau, D. T. M., Yen, N. T. & Setzer, W. N. (2020). Antimicrobial activities of essential oils from five species of cinnamomum growing wild in North Central Vietnam. Molecules, 25(1303), 1–12.
Divekar, P. A., Narayana, S., Divekar, B. A., Kumar, R., Gadratagi, B. G., Ray, A., Singh, A. K., Rani, V., Singh, V., Singh, A. K., Kumar, A., Singh, R. P., Meena, R. S. & Behera, T. K. (2022). Plant Secondary Metabolites as Defense Tools against Herbivores for Sustainable Crop Protection. International Journal of Molecular Sciences, 23(5). https://doi.org/10.3390/ijms23052690
Giri, B. R., Baral, R., Bhatt, H., Khadka, A., Tamrakar, R., Timalsina, G. & Gyawali, R. (2023). Phytochemical Screening, Free-Radical Scavenging Activity, in vitro Alpha-Amylase Inhibitory Activity, and in vivo Hypoglycemic Activity Studies of Several Crude Drug Formulations Based on Selected Medicinal Plants of Nepal. Pharmaceutical Chemistry Journal, 56(10), 1369–1378. https://doi.org/10.1007/s11094-023-02799-z
González, J. A. & Vallejo, J. R. (2023). The Use of Shells of Marine Molluscs in Spanish Ethnomedicine: A Historical Approach and Present and Future Perspectives. Pharmaceuticals, 16(10). https://doi.org/10.3390/ph16101503
Hao, B., Yang, Z., Liu, H., Liu, Y. & Wang, S. (2024). Advances in Flavonoid Research: Sources, Biological Activities, and Developmental Prospectives. Current Issues in Molecular Biology, 46(4), 2884–2925. https://doi.org/10.3390/cimb46040181
Hou, J., Liu, Q., Wang, J., Wu, Y., Li, T. & Gong, Z. (2020). Insecticide resistance of aedes albopictus in Zhejiang Province, China. BioScience Trends, 14(4), 248–254. https://doi.org/10.5582/bst.2020.03194
Kabtiyal, N., Bayas, R., Shinde, L. & Goyal, D. M. (2022). Review article on the synthesis of silver nanoparticles from plant extract and its larvicidal activity on the mosquito. International Journal of Mosquito Research, 9(3), 01–12. https://doi.org/10.22271/23487941.2022.v9.i3a.608
Kirar, M. & Sehrawat, N. (2022). Plant proteins as natural, biodegradable, low cost larvicides against mosquitoes. Indian Journal of Traditional Knowledge, 21(1), 89–96. https://doi.org/10.56042/ijtk.v21i1.28350
Marcos, R. A., Ussene, A. M., João, E. S. F., José, F., Chamuene, A. & Guidione, R. (2023). Resistance of Corn (Zea Mays L.) Genotypes To Natural Infestation of Fall Armyworm (Spodoptera Frugiperda) (J. E. Smith, 1797) (Lepidoptera: Noctuidae) in Mozambique. Revista Foco, 16(6), e2383. https://doi.org/10.54751/revistafoco.v16n6-145
Molina, V., von Plessing, C., Romero, A., Benavides, S., Troncoso, J. M., Pérez-Correa, J. R. & Franco, W. (2022). Determination of the Dissolution/Permeation and Apparent Solubility for Microencapsulated Emamectin Benzoate Using In Vitro and Ex Vivo Salmo salar Intestine Membranes. Pharmaceuticals, 15(6), 1–25. https://doi.org/10.3390/ph15060652
Nile, S. H., Baskar, V., Selvaraj, D., Nile, A., Xiao, J. & Kai, G. (2020). Nanotechnologies in Food Science: Applications, Recent Trends, and Future Perspectives. In Nano-Micro Letters (Vol. 12, Issue 1). Springer Singapore. https://doi.org/10.1007/s40820-020-0383-9
Rasool, M. H., Ahmad, M., Ayoub, M. & Abbas, M. A. (2023). A Novel Ascorbic Acid Based Natural Deep Eutectic Solvent as a Drilling Mud Additive for Shale Stabilization. Processes, 11(4). https://doi.org/10.3390/pr11041135
Setlur, A. S., Chandrashekar, K., Bhattacharjee, R., Kumar, J. & Niranjan, V. (2023). Deciphering the interaction mechanism of natural actives against larval proteins of Aedes aegypti to identify potential larvicides: a computational biology analysis. Journal of Biomolecular Structure and Dynamics, 41(22), 12480–12502. https://doi.org/10.1080/07391102.2023.2166993
Silva, D. A. da, Lima, J. F., Lima, G. F., Lima, L. M. G., Viana, L. N. C., Rodrigues, M., Silva, A. C. M. da, Bezerra, A. S., Araújo, J. I. F. de, Lopes, W. C., Magalhães, F. E. A. & Moura, L. F. W. G. (2021). Prospecting for special metabolites and larvicidal activity of ethanolic extracts from Azadirachta indica A. Juss. (Neem), collected in Tauá-CE against Aedes aegypti mosquito larvae. Research, Society and Development, 10(1), e48410111868. https://doi.org/10.33448/rsd-v10i1.11868
Silvério, M. R. S., Espindola, L. S., Lopes, N. P. & Vieira, P. C. (2020). Plant natural products for the control of Aedes aegypti: The main vector of important arboviruses. Molecules, 25(15). https://doi.org/10.3390/molecules25153484
Silvie, P. J., Martin, P., Huchard, M., Keip, P., Gutierrez, A. & Sarter, S. (2021). Prototyping a knowledge-based system to identify botanical extracts for plant health in sub-saharan africa. Plants, 10(5), 1–24. https://doi.org/10.3390/plants10050896
Stiani, S. N., Nurhayati, G. S., Effendi, E., Indriatmoko, D. D. & Yusransyah, Y. (2022). Formulasi dan Aktivitas Lotion Antinyamuk Aedes Aegypti dari Ekstrak Kulit Buah Limus (Mangifera Foetida Lour). Jurnal Ilmiah Kesehatan Delima, 4(2), 78–90. https://doi.org/10.60010/jikd.v4i2.80
Tia, J. B. & Small, G. (2023). Combined used of long-lasting insectiticidal nets and Bacillus thuringiensis israelensis larviciding , a promising integrated approach against malaria transmission in northern Côte d ’ Ivoire. Research Square, 1(1), 1–30.
Vitangcol, A. B., Dalawampu, R. E. C., Gonzalvo, V. G. D., Parungao, A. S. A. & Tucay, S. A. D. (2021). Evaluating the Synergistic Larvicidal Effects of Pistia stratiotes ( Water Lettuce ) and Azadirachta indica ( Neem ) Leaf Ethanolic Extract on Aedes aegypti ( Yellow Fever Mosquito ) Larvae. Research Congress, 50(2019).
Wilson, A. L., Courtenay, O., Kelly-Hope, L. A., Scott, T. W., Takken, W., Torr, S. J. & Lindsay, S. W. (2020). The importance of vector control for the control and elimination of vector-borne diseases. In PLoS Neglected Tropical Diseases (Vol. 14, Issue 1). https://doi.org/10.1371/journal.pntd.0007831
Yeshi, K., Crayn, D., Ritmejeryte, E. & Wangchuk, P. (2022). Plant secondary metabolites produced in response to abiotic product development. Molecules, 27(1), 313.
Zhou, Y., Liu, H., Leng, P., Zhu, J., Yao, S., Zhu, Y. & Wu, H. (2021). Analysis of the spatial distribution of Aedes albopictus in an urban area of Shanghai, China. Parasites and Vectors, 14(1), 1–17. https://doi.org/10.1186/s13071-021-05022-8
DOI: http://dx.doi.org/10.30829/contagion.v6i1.19748
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 John Riswanda, Novi Marisca
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.