Routh-Hurwitz Stability Analysis of the Predator-Prey Model with Prey Population Harvesting in Polluted Aquatic Ecosystems
Abstract
Keywords
References
E. Zahran et al., “The impact of heavy metal pollution: bioaccumulation, oxidative stress, and histopathological alterations in fish across diverse habitats,” Aquac. Int., vol. 33, no. 5, p. 371, Oct. 2025, doi: 10.1007/s10499-025-02045-1.
L. N. Fadlillah, S. Utami, A. A. Rachmawati, G. D. Jayanto, and M. Widyastuti, “Ecological risk and source identifications of heavy metals contamination in the water and surface sediments from anthropogenic impacts of urban river, Indonesia,” Heliyon, vol. 9, no. 4, p. e15485, Apr. 2023, doi: 10.1016/j.heliyon.2023.e15485.
C. Lu, X. Liu, and Z. Li, “The dynamics and harvesting strategies of a predator-prey system with Allee effect on prey,” AIMS Math., vol. 8, no. 12, pp. 28897–28925, 2023, doi: 10.3934/math.20231481.
M. Chen, Y. Xu, J. Zhao, and X. Wei, “Turing–Hopf Bifurcation Analysis in a Diffusive Ratio-Dependent Predator–Prey Model with Allee Effect and Predator Harvesting,” Entropy, vol. 26, no. 1, p. 18, Dec. 2023, doi: 10.3390/e26010018.
R. Manoharan, R. Rani, and A. Moussaoui, “Predator-prey dynamics with refuge, alternate food, and harvesting strategies in a patchy habitat,” Math. Biosci. Eng., vol. 22, no. 4, pp. 810–845, 2025, doi: 10.3934/mbe.2025029.
S. Agus, S. Toaha, Kasbawati, and Khaeruddin, “Stability Analysis of Prey-Predator Model Migration with Holling Type-III Response Function in The Presence of Competition and Toxicity,” E3S Web Conf., vol. 483, p. 03003, Jan. 2024, doi: 10.1051/e3sconf/202448303003.
H. Guo, J. Han, and G. Zhang, “Hopf Bifurcation and Control for the Bioeconomic Predator–Prey Model with Square Root Functional Response and Nonlinear Prey Harvesting,” Mathematics, vol. 11, no. 24, p. 4958, Dec. 2023, doi: 10.3390/math11244958.
S. D. Zawka and T. T. Melese, “Dynamics and optimal harvesting of prey–predator in a polluted environment in the presence of scavenger and pollution control,” Math. Open, vol. 02, pp. 1–24, Jan. 2023, doi: 10.1142/S2811007223500049.
R. N. Premakumari, C. Baishya, and M. K. A. Kaabar, “Dynamics of a fractional plankton–fish model under the influence of toxicity, refuge, and combine-harvesting efforts,” J. Inequalities Appl., vol. 2022, no. 1, p. 137, Nov. 2022, doi: 10.1186/s13660-022-02876-z.
S. Zhai, Q. Wang, and T. Yu, “Fuzzy optimal harvesting of a prey-predator model in the presence of toxicity with prey refuge under imprecise parameters,” Math. Biosci. Eng., vol. 19, no. 12, pp. 11983–12012, 2022, doi: 10.3934/mbe.2022558.
L. Ye, H. Zhao, and D. Wu, “Spatiotemporal dynamics in a toxin-producing predator–prey model with threshold harvesting,” Nonlinear Anal. Model. Control, vol. 28, no. 5, pp. 1–24, Jul. 2023, doi: 10.15388/namc.2023.28.32845.
Y. Shao, H. Yu, C. Jin, J. Fang, and M. Zhao, “Dynamics analysis of a predator-prey model with Allee effect and harvesting effort,” Electron. Res. Arch., vol. 32, no. 10, pp. 5682–5716, 2024, doi: 10.3934/era.2024263.
C. Liu, Y. Chen, Y. Yu, and Z. Wang, “Bifurcation and Stability Analysis of a New Fractional-Order Prey–Predator Model with Fear Effects in Toxic Injections,” Mathematics, vol. 11, no. 20, p. 4367, Oct. 2023, doi: 10.3390/math11204367.
O. Francis, T. Aminer, B. Okelo, and J. Manyala, “Dynamical Analysis of Prey Refuge Effects on the Stability of Holling Type III Four-species Predator-Prey System,” Results Control Optim., vol. 14, no. January, p. 100390, Mar. 2024, doi: 10.1016/j.rico.2024.100390.
F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Second edi., vol. 40. in Texts in Applied Mathematics, vol. 40. New York, NY: Springer New York, 2012. doi: 10.1007/978-1-4614-1686-9.
G. F. Estabrook, “Mathematical Biology: I: An Introduction. Third Edition. Interdisciplinary Applied Mathematics, Volume 17 . By J D Murray. New York: Springer . $59.95. xxiii + 551 p; ill.; index. ISBN: 0–387–95223–3. 2002. Mathematical Biology: II: Spatial Models and Bio,” Q. Rev. Biol., vol. 79, no. 1, pp. 65–66, Mar. 2004, doi: 10.1086/421587.
E. W. Kopf and A. J. Lotka, “Elements of Physical Biology,” J. Am. Stat. Assoc., vol. 20, no. 151, p. 452, Sep. 1925, doi: 10.2307/2965538.
V. VOLTERRA, “Fluctuations in the Abundance of a Species considered Mathematically1,” Nature, vol. 118, no. 2972, pp. 558–560, Oct. 1926, doi: 10.1038/118558a0.
P. H. LESLIE and J. C. GOWER, “The properties of a stochastic model for the predator-prey type of interaction between two species,” Biometrika, vol. 47, no. 3–4, pp. 219–234, 1960, doi: 10.1093/biomet/47.3-4.219.
S. Lenhart and J. T. Workman, Optimal Control Applied to Biological Models, 1st Editio. New York: Chapman and Hall/CRC, 2007. doi: 10.1201/9781420011418.
T. K. Ang, H. M. Safuan, H. S. Sidhu, Z. Jovanoski, and I. N. Towers, “Impact of Harvesting on a Bioeconomic Predator–Prey Fishery Model Subject to Environmental Toxicant,” Bull. Math. Biol., vol. 81, no. 7, pp. 2748–2767, Jul. 2019, doi: 10.1007/s11538-019-00627-8.
M. Haque and S. Sarwardi, “Effect of toxicity on a harvested fishery model,” Model. Earth Syst. Environ., vol. 2, no. 3, p. 122, Sep. 2016, doi: 10.1007/s40808-016-0175-x.
G. Teschl, Ordinary Differential Equations and Dynamical Systems, vol. 140, no. d. in Graduate Studies in Mathematics, vol. 140. Providence, Rhode Island: American Mathematical Society, 2012. doi: 10.1090/gsm/140.
M. N. Huda, F. D. T. AMIJAYA, and I. Purnamasari, “the Effect of Harvesting Activities on Prey-Predator Fishery Model With Holling Type Ii in Toxicant Aquatic Ecosystem,” Aust. J. Math. Anal. Appl., vol. 17, no. 2, pp. 1–11, 2020, [Online]. Available: https://ajmaa.org/cgi-bin/paper.pl?string=v17n2/V17I2P13.tex
R. Grimshaw, Nonlinear Ordinary Differential Equations. Routledge, 2017. doi: 10.1201/9780203745489.
S. R. Choudhury, “Dynamics and Bifurcations (Jack K. Hale and Huseyin Kocak),” SIAM Rev., vol. 36, no. 2, pp. 297–299, Jun. 1994, doi: 10.1137/1036075.
P. Blanchard, R. L. Devaney, and G. R. Hall, Differential Equations, Fourth Edi. Brooks/Cole, 2012.
K. Ogata and J. W. Brewer, “Modern Control Engineering,” J. Dyn. Syst. Meas. Control, vol. 93, no. 1, pp. 63–63, Mar. 1971, doi: 10.1115/1.3426465.
D. Lathrop, “Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering,” Phys. Today, vol. 68, no. 4, pp. 54–55, Apr. 2015, doi: 10.1063/PT.3.2751.
S. Pratiwi, Y. N. Nasution, and M. N. Huda, “Analisis Model Matematika Predator-Prey Perikanan Pada Ekosistem Perairan Tercemar,” Basis J. Ilm. Mat., vol. 1, no. 1, pp. 51–60, 2022, [Online]. Available: Pratiwi, S., Nasution, Y. N., & Huda, M. N. (2022). Analisis Model Matematika Predator-Prey Perikanan Pada Ekosistem Perairan Tercemar. Basis Jurnal Ilmiah Matematika, 1(1), 51–60.
S. Toaha, “The effect of harvesting with threshold on the dynamics of prey predator model,” J. Phys. Conf. Ser., vol. 1341, no. 6, p. 062021, Oct. 2019, doi: 10.1088/1742-6596/1341/6/062021.
P. Kalra and Shreya, “Impact of water toxicity and acidity on dynamics of prey-predator aquatic populations: a mathematical model,” J. Phys. Conf. Ser., vol. 1531, no. 1, p. 012081, May 2020, doi: 10.1088/1742-6596/1531/1/012081.
DOI: http://dx.doi.org/10.30829/zero.v9i2.26061
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Publisher : Department of Mathematics Faculty of Science and Technology Universitas Islam Negeri Sumatera Utara Medan | |
✉️ Email: zero_journal@uinsu.ac.id 📱 WhatsApp:085270009767 (Admin Official) | |
| | | | |
