Predicting Malaria Incidence Using LSTM and Environmental Variables

Wellie Sulistijanti, Laelatul Khikmah, Erisa Adyati Rahmasari, Cikal Arbitan Putra Sangnandha, Idan Maulana Yusuf, Dzahari Alikharimah Azizah

Abstract


Climate change is exacerbating malaria risk in Indonesia, especially in Papua. This study proposes a Bidirectional Long Short-Term Memory (LSTM) model to forecast malaria incidence using climate variables. The dataset comprises monthly malaria and climate records (rainfall, temperature, humidity) from four high-endemic provinces between 2014 and 2024. Key methodologies included data augmentation to address data imbalances and a grouped time-series cross-validation for robust model evaluation. An ARIMA model was implemented as a validation baseline to benchmark the proposed approach. The Bi-LSTM model delivered superior performance, achieving an average test R² of 0.7210 and SMAPE of 11.02%. the model demonstrated excellent generalization with no evidence of overfitting, significantly outperforming the ARIMA baseline. The findings validate the use of deep learning models as effective tools for public health surveillance, providing reliable early warnings to support timely interventions. Future work will apply SHAP interpretability techniques and expanding the model's geographic scope.

Full Text:

PDF

References


U. M. Sirisha, M. C. Belavagi, and G. Attigeri, “Profit Prediction Using ARIMA, SARIMA and LSTM Models in Time Series Forecasting: A Comparison,” IEEE Access, vol. 10, pp. 124715–124727, 2022, doi: 10.1109/ACCESS.2022.3224938.

T. Santosh, D. Ramesh, and D. Reddy, “LSTM based prediction of malaria abundances using big data,” Comput Biol Med, vol. 124, p. 103859, Sep. 2020, doi: 10.1016/j.compbiomed.2020.103859.

World Health Organization, World Malaria Report 2021. 2021.

S.-X. Zhang et al., “Global, regional, and national burden of malaria, 1990–2021: Findings from the global burden of disease study 2021,” Decoding Infection and Transmission, vol. 2, p. 100030, 2024, doi: 10.1016/j.dcit.2024.100030.

M. Delvina, E. Yuniarti, E. Barlian, and L. Handayuni, “Trends in Malaria cases by Plasmodium type in West Sumatra province: Analysis of 2017-2023,” Multidisciplinary Science Journal, vol. 7, no. 10, p. 2025492, Apr. 2025, doi: 10.31893/multiscience.2025492.

D. N. Aisyah et al., “The Changing Incidence of Malaria in Indonesia: A 9‐Year Analysis of Surveillance Data,” Adv Public Health, vol. 2024, no. 1, Jan. 2024, doi: 10.1155/adph/2703477.

M. F. A. K. E. R. R. P. W. P. S. S. Wiwik Anggraeni, “Combination of BERT and Hybrid CNN-LSTM Models for Indonesia Dengue Tweets Classification,” International Journal of Intelligent Engineering and Systems, vol. 17, no. 1, pp. 813–826, Feb. 2024, doi: 10.22266/ijies2024.0229.68.

D. M. Menda et al., “Forecasting Confirmed Malaria Cases in Northwestern Province of Zambia: A Time Series Analysis Using 2014–2020 Routine Data,” Adv Public Health, vol. 2021, pp. 1–8, Oct. 2021, doi: 10.1155/2021/6522352.

M. Javaid, M. Sarfraz, M. Aftab, Q. Zaman, H. Rauf, and K. Alnowibet, “WebGIS-Based Real-Time Surveillance and Response System for Vector-Borne Infectious Diseases,” Int J Environ Res Public Health, vol. 20, no. 4, p. 3740, Feb. 2023, doi: 10.3390/ijerph20043740.

E. Naroum et al., “Comparative analysis of deep learning and machine learning techniques for forecasting new malaria cases in Cameroon’s Adamaoua region,” Intell Based Med, vol. 11, p. 100220, 2025, doi: 10.1016/j.ibmed.2025.100220.

H. Alizadegan, B. Rashidi Malki, A. Radmehr, H. Karimi, and M. A. Ilani, “Comparative study of long short-term memory (LSTM), bidirectional LSTM, and traditional machine learning approaches for energy consumption prediction,” Energy Exploration and Exploitation, vol. 43, no. 1, pp. 281–301, Jan. 2025, doi: 10.1177/01445987241269496.

K. Tanah Bumbu Kalimantan Selatan et al., “Pengaruh curah hujan, kelembaban, dan temperatur terhadap prevalensi Malaria di The effect of rainfall, humidity, and temperature on malaria prevalence in Tanah Bumbu District South Kalimantan,” JHECDs, vol. 3, no. 1, pp. 22–27, 2017, doi: 10.22435/jhecds.v3i1.5063.22-27.

S. Raheja and S. Malik, “Prediction of Air Quality Using LSTM Recurrent Neural Network,” International Journal of Software Innovation, vol. 10, no. 1, pp. 1–16, Apr. 2022, doi: 10.4018/IJSI.297982.

Y. S. Kitawa and Z. G. Asfaw, “Space-time modelling of monthly malaria incidence for seasonal associated drivers and early epidemic detection in Southern Ethiopia,” Malar J, vol. 22, no. 1, p. 301, Oct. 2023, doi: 10.1186/s12936-023-04742-9.

W. Haileselassie et al., “International border malaria transmission in the Ethiopian district of Lare, Gambella region: implications for malaria spread into South Sudan,” Malar J, vol. 22, no. 1, pp. 1–10, 2023, doi: 10.1186/s12936-023-04479-5.

G. J. Gbaguidi, N. Topanou, W. L. Filho, and G. K. Ketoh, “Potential impact of climate change on the transmission of malaria in Northern Benin, West Africa,” Theor Appl Climatol, vol. 155, no. 5, pp. 3525–3539, 2024, doi: 10.1007/s00704-023-04818-1.

M. Javaid, M. S. Sarfraz, M. U. Aftab, Q. uz Zaman, H. T. Rauf, and K. A. Alnowibet, “WebGIS-Based Real-Time Surveillance and Response System for Vector-Borne Infectious Diseases,” Int J Environ Res Public Health, vol. 20, no. 4, 2023, doi: 10.3390/ijerph20043740.

L. Demoze, F. Gubena, E. Akalewold, H. Brhan, T. Kifle, and G. Yitageasu, “Spatial, temporal, and spatiotemporal cluster detection of malaria incidence in Southwest Ethiopia,” Front Public Health, vol. 12, no. January, 2024, doi: 10.3389/fpubh.2024.1466610.

W. Haileselassie et al., “International border malaria transmission in the Ethiopian district of Lare, Gambella region: implications for malaria spread into South Sudan,” Malar J, vol. 22, no. 1, pp. 1–10, 2023, doi: 10.1186/s12936-023-04479-5.

G. J. Gbaguidi, N. Topanou, W. L. Filho, and G. K. Ketoh, “Potential impact of climate change on the transmission of malaria in Northern Benin, West Africa,” Theor Appl Climatol, vol. 155, no. 5, pp. 3525–3539, 2024, doi: 10.1007/s00704-023-04818-1.

N. Mahdizadeh Gharakhanlou, M. S. Mesgari, and N. Hooshangi, “Developing an agent-based model for simulating the dynamic spread of Plasmodium vivax malaria: A case study of Sarbaz, Iran,” Ecol Inform, vol. 54, no. September, p. 101006, 2019, doi: 10.1016/j.ecoinf.2019.101006.

Y. S. Kitawa and Z. G. Asfaw, “Space-time modelling of monthly malaria incidence for seasonal associated drivers and early epidemic detection in Southern Ethiopia,” Malar J, vol. 22, no. 1, pp. 1–13, 2023, doi: 10.1186/s12936-023-04742-9.

D. Diriba, S. Karuppannan, T. Regasa, and M. Kasahun, “Spatial analysis and mapping of malaria risk areas using geospatial technology in the case of Nekemte City, western Ethiopia,” Int J Health Geogr, vol. 23, no. 1, 2024, doi: 10.1186/s12942-024-00386-3.

L. Roque, C. Soares, V. Cerqueira, and L. Torgo, “L-GTA: Latent Generative Modeling for Time Series Augmentation,” 2025. doi: XXXXXXX.XXXXXXX.

T. Žvirblis, A. Pikšrys, D. Bzinkowski, M. Rucki, A. Kilikevičius, and O. Kurasova, “Data Augmentation for Classification of Multi-Domain Tension Signals,” Informatica, pp. 883–908, Nov. 2024, doi: 10.15388/24-INFOR578.

I. E. Rozi et al., “Rapid entomological assessment in eight high malaria endemic regencies in Papua Province revealed the presence of indoor and outdoor malaria transmissions,” Sci Rep, vol. 14, no. 1, p. 14603, Jun. 2024, doi: 10.1038/s41598-024-64958-w.

O. Nkiruka, R. Prasad, and O. Clement, “Prediction of malaria incidence using climate variability and machine learning,” Inform Med Unlocked, vol. 22, p. 100508, 2021, doi: 10.1016/j.imu.2020.100508.

R. Sriviswa, H. Radhika Reddy, N. M. Rajendran, V. Sowmya, and E. A. Gopalakrishnan, “Deep Attention Model for Malaria Prediction,” Springer, 2025, pp. 45–56. doi: 10.1007/978-3-031-87154-2_5.

W. SULISTIJANTI and A. C. Vayuanita, “PERAMALAN HASIL PRODUKSI PADI DI PROVINSI JAWA TENGAH MENGGUNAKAN METODE HYBRID SARIMA-FUZZY TIME SERIES CHEN,” Agritech : Jurnal Fakultas Pertanian Universitas Muhammadiyah Purwokerto, vol. 25, no. 2, p. 194, Jul. 2024, doi: 10.30595/agritech.v25i2.21835.

R. Syabrina and G. Wang, “Predictive Analysis of Malaria Cases in Indonesia Using Machine Learning,” Syntax Literate ; Jurnal Ilmiah Indonesia, vol. 9, no. 9, pp. 4849–4859, Sep. 2024, doi: 10.36418/syntax-literate.v9i9.16714.




DOI: http://dx.doi.org/10.30829/zero.v9i2.26043

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Publisher :
Department of Mathematics
Faculty of Science and Technology
Universitas Islam Negeri Sumatera Utara Medan
📱 WhatsApp:085270009767 (Admin Official)
SINTA 2 Google Scholar CrossRef Garuda DOAJ