Spatial Modeling of Food Security Index in Central Java Using Mixed Geographically Weighted Regression

Nur Chamidah, Toha Saifudin, Arinda Mahadesyawardani, Nathania Fauziah, Rizky Dwi Kurnia Rahayu, Kimberly Maserati Siagian, Ezha Easyfa Wieldyanisa

Abstract


Central Java plays an important role in Indonesia’s food security, ranking second nationally in the 2023 Food Security Index (FSI). However, nearly 45% of its districts/cities fall below the provincial average, reflecting spatial disparities. This study applies the Mixed Geographically Weighted Regression (MGWR) method to model the factors influencing FSI in Central Java by considering global and local spatial heterogeneity. Six clusters were formed based on similar characteristics. The MGWR model identifies that the factor of households not having access to clean water has a global negative effect which contributes 0.1710 points in decreasing the FSI, while population density is the dominant local factor that has a significant negative effect on the FSI in 21 districts/cities, covering approximately 60% of the area in Central Java. The MGWR model using a fixed Gaussian kernel outperforms global regression and GWR, with the lowest AIC, highest (93.11%), and a MAPE of 1.00838%. 


Keywords


Fixed Gaussian Kernel; Food Security Index; Mixed Geographically Weighted Regression; SDGs

Full Text:

PDF

References


Economist Impact, “The 11th Global Food Security Index,” Economist Impact, 2022.

Badan Pusat Statistik, “Prevalensi Ketidakcukupan Konsumsi Pangan (Persen),” BPS, 2024.

Supriyanto, “Produksi Padi Jateng 2024 Sumbang 17 Persen Kebutuhan Pangan Nasional,” jatengprov.go.id, 2024.

B. H. Simanjuntak et al., “Analisis Model Ketahanan Pangan Jawa Tengah 2045: Pencapaian Visi Jawa Tengah Sebagai Lumbung Pangan Nasional,” Analisis Kebijakan Daerah., vol. 1, no. 1, pp. 1–19, 2024.

Q. Huang, Y. Li, S. Ai, Y. Chen, and Y. Liu, “Impact of regional economic development on the spatiotemporal changes of coastlines: a case study of Ningbo-Taizhou-Wenzhou region,” Frontiers in Earth Science, vol. 12, p. 1428097, 2024, doi: 10.3389/feart.2024.1428097.

I. Y. Safitri, M. A. Tiro, and Ruliana, “Spatial Regression Analysis to See Factors Affecting Food Security at District Level in South Sulawesi Province,” ARRUS Journal of Mathematics and Applied Science, vol. 2, no. 2, pp. 60–72, 2022, doi: 10.35877/mathscience740.

S. Sisman and A. C. Aydinoglu, “A modelling approach with geographically weighted regression methods for determining geographic variation and influencing factors in housing price: A case in Istanbul,” Land use policy, vol. 119, p. 106183, 2022, doi: 10.1016/j.landusepol.2022.106183.

Supriadi, Priyarsono, and S. Dominicus, “Pemetaan dan Analisis Spasial Determinan Ketahanan Pangan Indonesia 2023,” Institut Pertanian Bogor, 2024.

E. Sartika and A. Suryani, “Comparison of Geographically Weighted Regression Analysis and Global Regression on Modeling the Unemployment Rate in West Java,” in International Seminar of Science and Applied Technology (ISSAT 2020), 2020, pp. 472–478.

V. N. Mishra, V. Kumar, R. Prasad, and M. Punia, “Geographically weighted method integrated with logistic regression for analyzing spatially varying accuracy measures of remote sensing image classification,” Journal of the Indian Society of Remote Sensing, vol. 49, pp. 1189–1199, 2021, doi: 10.1007/s12524-020-01286-2.

T. M. Oshan, J. P. Smith, and A. S. Fotheringham, “Targeting the spatial context of obesity determinants via multiscale geographically weighted regression,” International Journal of Health Geographics, vol. 19, pp. 1–17, 2020, doi: 10.1186/s12942-020-00204-6.

E. Risvenjaya, D. Yuliawan, and T. Andrian, “Analisis Indeks Ketahanan Pangan di Provinsi Sumatera Selatan,” Journal on Education, vol. 07, no. 01, pp. 8516–8524, 2024, doi: 10.31004/joe.v7i1.7690.

Farida, T. Saifudin, and Suliyanto, “Pemodelan Indeks Ketahanan Pangan (IKP) Menurut Provinsi di Indonesia dengan Pendekatan Geographically Weighted Regression,” Universitas Airlangga, Surabaya, 2023.

P. Yao, H. Fan, Q. Wu, J. Ouyang, and K. Li, “Compound impact of COVID-19, economy and climate on the spatial distribution of global agriculture and food security,” Science of the Total Environment, vol. 880, p. 163105, Jul. 2023, doi: 10.1016/j.scitotenv.2023.163105.

A. N. Kirana and Abdurakhman, “Fungsi Pembobot Kernel Fixed Bisquare pada Model Mixed Geographically Weighted Regression (Mixed GWR),” Universitas Gadjah Mada, Yogyakarta, 2023.

P. Utami, D. Nurdiansyah, and A. Y. Kartini, “Implementation of Mixed Geographically Weighted Regression Model to Analyze Social Assistance Budget in East Java,” Jurnal Statistika dan Aplikasi, vol. 8, no. 2, pp. 171–178, 2024, doi: 10.21009/JSA.08204.

N. Khatun, “Applications of Normality Test in Statistical Analysis,” Open Journal of Statistics., vol. 11, no. 01, pp. 113–122, 2021, doi: 10.4236/ojs.2021.111006.

I. D. Nugrahani, Y. Susanti, and N. Qona, “Modeling of Rice Production in Indonesia Using Robust Regression with The Method of Moments (MM) Estimation,” in Basic and Applied Science Conference (BASC), 2021, vol. 2021, pp. 79–87, doi: 10.11594/nstp.2021.1111.

I. Djalic and S. Terzic, “Violation of the assumption of homoscedasticity and detection of heteroscedasticity,” Decision Making Applications in Management and Engineering., vol. 4, no. 1, pp. 1–18, 2021, doi: 10.31181/dmame2104001d.

W. D. Revildy, S. S. S. Lestari, and Y. Nalita, “Pemodelan Spatial Error Model (Sem) Angka Prevalensi Balita Pendek (Stunting) Di Indonesia Tahun 2018,” in Seminar Nasional Official Statistics, 2020, vol. 2020, no. 1, pp. 1224–1231, doi: 10.34123/semnasoffstat.v2020i1.662.

S. H. Daulay and E. Simamora, “Pemodelan Faktor-Faktor Penyebab Kemiskinan Di Provinsi Sumatera Utara Menggunakan Metode Geographically Weighted Regression (GWR),” Jurnal Riset Rumpun Matematika dan Ilmu Pengetahuan Alam, vol. 2, no. 1, pp. 47–60, 2023, doi: 10.55606/jurrimipa.v2i1.646.

D. G. B. B. Joseph Awoamim Yacim, “A Comparison of Bandwidth and Kernel Function Selection in Geographically Weighted Regression for House Valuation,” International Journal of Technology, vol. 10, no. 1, pp. 291–319, 2019, doi: 10.14716/ijtech.v10i1.975.

M. E. Charlton and A. S. Fotheringham, Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity. Wiley, 2009.

A. S. Fotheringham, C. Brunsdon, and M. Charlton, Geographically Weighted Regression. United Kingdom: Wiley, 2002.

Y. Jin, H. Zhang, Y. Yan, and P. Cong, “A semi-parametric geographically weighted regression approach to exploring driving factors of fractional vegetation cover: A case study of Guangdong,” Sustainability, vol. 12, no. 18, 2020, doi: 10.3390/su12187512.

T. Lawwamah, L. Harsyiah, and Q. Aini, “Pemodelan Angka Kematian Ibu (AKI) di Indonesia Menggunakan Mixed Geographically Weighted Regression (MGWR),” Semeton Mathematics Journal, vol. 1, no. 2, pp. 79–89, 2024, doi: 10.29303/semeton.v1i2.241.

P. K. Ola, A. Iriany, and S. Astutik, “Mixed Geographically Weighted Regression (Mgwr) With Adaptive Weighting Function in Poverty Modeling in Ntt Province,” BAREKENG Jurnal Ilmu Matematika dan Terapan, vol. 18, no. 3, pp. 2035–2046, 2024, doi: 10.30598/barekengvol18iss3pp2035-2046.

E. A. Wicaksono, R. F. Rachmadi, and Wirawan, “Prediction Land Value Using Geographically Weighted Extreme Learning Machine,” in 2023 7th International Conference on New Media Studies (CONMEDIA), 2023, pp. 269–275, doi: 10.1109/CONMEDIA60526.2023.10428407.

Y. Farida et al., “Modeling the Flood Disaster in South Kalimantan Using Geographically Weighted Regression and Mixed Geographically Weighted Regression,” ITM Web Conferences, vol. 58, p. 04004, 2024, doi: 10.1051/itmconf/20245804004.

T. A. Kurniawan et al., “Implications of climate change on water quality and sanitation in climate hotspot locations: A case study in Indonesia,” Water Supply, vol. 24, no. 2, pp. 517–542, 2024, doi: 10.2166/ws.2024.008.

A. W. Y. Prasetya, “Analisis Pengaruh Jumlah Penduduk, Ketersediaan Pangan, Konsumsi Pangan dan Harga Pangan Strategis terhadap Indeks Ketahanan Pangan,” Jurnal Pertahanan dan Bela Negara, vol. 14, no. 2, pp. 82–102, 2024, doi: 10.33172/jpbh.v14i2.19627.

Y. A. Permatasari and D. Purnomo, “Fenomena Pangan di Jawa Tengah dari Sisi Ketersediaan Komoditi Pangan Beras,” Equilibrium Jurnal Ilmu Ekonomi Manajemen dan Akuntansi, vol. 14, no. 1, pp. 54–68, 2025, doi: 10.35906/equili.v14i1.2293.




DOI: http://dx.doi.org/10.30829/zero.v9i1.25044

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Publisher :
Department of Mathematics
Faculty of Science and Technology
Universitas Islam Negeri Sumatera Utara Medan
📱 WhatsApp:085270009767 (Admin Official)
SINTA 2 Google Scholar CrossRef Garuda DOAJ