Geographically Weighted Negative Binomial Regression (GWNBR) Modeling of Tuberculosis (TB) in North Sumatra
Abstract
Keywords
Full Text:
PDFReferences
T. Saifudin, M. Firmansyah, J. T. Victory, and M. Aisharezka, “Pemodelan Kasus Tuberkulosis di Indonesia dengan Metode GWPR Guna Mendukung SDGs 2030,” vol. 21, no. 3, pp. 289–304, 2024, doi: http://dx.doi.org/10.12962/limits.v21i3.17041.
H. Helmy, M. T. Kamaluddin, I. Iskandar, and Suheryanto, “Investigating Spatial Patterns of Pulmonary Tuberculosis and Main Related Factors in Bandar Lampung, Indonesia Using Geographically Weighted Poisson Regression,” Trop. Med. Infect. Dis., vol. 7, no. 9, 2022, doi: 10.3390/tropicalmed7090212.
N. Siddalingaiah, K. Chawla, S. B. Nagaraja, and D. Hazra, “Risk factors for the development of tuberculosis among the pediatric population: a systematic review and meta-analysis,” Eur. J. Pediatr., vol. 182, no. 7, pp. 3007–3019, 2023, doi: 10.1007/s00431-023-04988-0.
Dinas Kesehatan Sumatera Utara, “Profil Kesehatan Provinsi Sumatera Utara 2022,” Dinas Kesehat. Sumatera Utara, vol. 2, pp. 1–466, 2022. Available at: https://dinkes.sumutprov.go.id/
D. R. Putri, M. Fathurahman, and S. Suyitno, “Pemodelan Jumlah Kasus Tuberkulosis Paru di Indonesia dengan Geographically Weighted Negative Binomial Regression,” EKSPONENSIAL, vol. 15, no. 1, p. 49, May 2024, doi: 10.30872/eksponensial.v15i1.1303.
M. Y. Darsyah, “Pemodelan Geographically Weighted Negative Binomial Regression (GWNBR) pada Kasus Malaria di Indonesia,” J. Litbang Edusaintech, vol. 2, no. 2, pp. 149–164, 2021, [Online]. Available: http://dx.doi.org/10.17509/ijost.v1i2
L. Zhang, J. Cheng, and C. Jin, “Spatial interaction modeling of OD flow data: Comparing geographically weighted negative binomial regression (GWNBR) and OLS (GWOLSR),” ISPRS Int. J. Geo-Information, vol. 8, no. 5, 2019, doi: 10.3390/ijgi8050220.
B. B. Prasenda, M. D. Hermawan, M. Aisharezka, S. A. Tsauri, and N. Chamidah, “Pemodelan Jumlah Kasus Tuberkulosis pada Anak di Kota Bandung dengan Pendekatan Geographically Weighted Negative Binomial Regression,” G-Tech J. Teknol. Terap., vol. 8, no. 1, pp. 528–537, 2024, doi: 10.33379/gtech.v8i1.3881.
A. A. Nurfajrin S, N. Sunusi, and E. T. Herdiani, “Modeling Mixed Geographically Weighted Negative Binomial Regression on the Number of Tuberculosis Cases in South Sulawesi,” Commun. Math. Biol. Neurosci., vol. 2023, pp. 1–13, 2023, doi: 10.28919/cmbn/8267.
H. Yasin, I. Suryani, and P. Kartikasari, “Graphical interface of geographically weighted negative binomial regression (GWNBR) model using R-Shiny,” J. Phys. Conf. Ser., vol. 1943, no. 1, 2021, doi: 10.1088/1742-6596/1943/1/012155.
M. J. T. L. Gomes, F. Cunto, and A. R. Silva, “Geographically weighted negative binomial regression applied to zonal level safety performance models,” Accid. Anal. Prev., vol. 106, no. June, pp. 254–261, 2017, doi: 10.1016/j.aap.2017.06.011.
C. Nisa, M. Nur Aidi, and I. M. Sumertajaya, “Geographically Weighted Negative Binomial Regression Modeling of Tuberculosis Cases with Distribution Evaluation,” Int. J. Sci. Res. Sci. Eng. Technol., vol. 4099, pp. 279–285, 2020, doi: 10.32628/ijsrset1207473.
A. O. Halim and N. Satyahadewi, “Factor Analysis on Poverty in Kalimantan Island with Geographically Weighted Negative Binomial Regression,” vol. 4, no. 01, pp. 41–52, 2025, doi: 10.30985/pijmathvol4iss1pp41-52 Factor
F. W. R. Fadilah, S. S. Handajani, E. Zukhronah, and H. Pratiwi, “Geographically weighted negative binomial regression model to analysis of factors that influence on maternal mortality in Central Java Province,” AIP Conf. Proc., vol. 2202, pp. 1–6, 2019, doi: 10.1063/1.5141718.
I. Suryani, H. Yasin, and P. Kartikasari, “Pemodelan Jumlah Kasus Demam Berdarah Dengue (Dbd) Di Jawa Tengah Dengan Geographically Weighted Negative Binomial Regression (Gwnbr),” J. Gaussian, vol. 10, no. 1, pp. 136–148, 2021, doi: 10.14710/j.gauss.v10i1.29400.
Z. Mar’ah, Z. Rais, and A. S. Haris, “Geographically Weighted Negative Binomial Regression (GWNBR) in Modeling the Risk Factors of Pneumonia Disease Among Toddlers in The Central Sulawesi Province,” J. Stat. Its Appl. Teach. Res., vol. 5, no. 3, pp. 118–131, 2023, doi: 10.35580/variansiunm151.
M. F. Rasyidin, D. Anggraini, H. Muttaqin, and K. Selatan, “RAGAM: Journal of Statistics and Its Application Volume 02 Nomor 02, Desember 2023,” vol. 02, no. 2017, pp. 1–15, 2023, https://jurnaluniv45sby.ac.id/index.php/JUMMA45/article/view/3166?articlesBySimilarityPage=2&utm_source=chatgpt.com
E. Evadianti and Purhadi, “Pemodelan Jumlah Kematian Ibu di Jawa Timur dengan Geographically Weighted Negative Binomial Regression (GWNBR),” J. Sains dan Seni ITS, vol. 3, no. 2, pp. 182–187, 2014, doi: 10.12962/j23373520.v3i2.8128.
J. Statistika, “Pemodelan dan Pemetaan Jumlah Kasus DBD di Kota Surabaya dengan Geographically Weighted Negative Binomial Regression ( Gwnbr ) dan Flexibly Shaped Spatial Scan Statistic,” vol. 4, no. 2, 2015, doi: 10.12962/j23373520.v4i2.11183.
U. Menangani, O. Pada, and J. Penduduk, “Geographically weighted negative binomial regression untuk menangani overdispersi pada jumlah penduduk miskin 1,2,3,” vol. 10, pp. 532–543, 2021, doi: 10.20956/j.v19i1.21757, doi: 10.12962/j23373520.v3i2.8128.
E. D. Safire and P. Purhadi, “Pemodelan Faktor-Faktor yang Mempengaruhi Jumlah Kasus Diabetes Melitus di Jawa Timur Menggunakan Geographically Weighted Generalized Poisson Regression dan Geographically Weighted Negative Binomial Regression,” Inferensi, vol. 6, no. 1, p. 1, 2023, doi: 10.12962/j27213862.v6i1.12623.
I. U. Utami, I. Setiawan, and D. Daniaty, “Modelling the number of HIV/AIDS in Central Sulawesi,” J. Phys. Conf. Ser., vol. 1763, no. 1, 2021, doi: 10.1088/1742-6596/1763/1/012046.
K. Stunting et al., “Modeling Geographically Weighted Negative Binomial Regression ( GWNBR ) on Stunting Incidence in Malang Regency Pemodelan Geographically Weighted Negative Binomial Regression,” vol. 19, no. 1, pp. 163–171, 2022, doi: 10.20956/j.v19i1.21757.
D. S. Rini, “Geographically Weighted Negative Binomial Regression untuk Jumlah Kasus Demam Berdarah Dengue Kabupaten/Kota Provinsi Bengkulu,” vol. 1, pp. 736–744, 2018.
R. Gwnbr, “KAJIAN EFEK SPASIAL PADA KASUS DIFTERI DENGAN METODE GEOGRAPHICALLY WEIGHTED NEGATIVE BINOMIAL,” pp. 91–104, 2019, doi: doi.org/10.29244/IJSA.V3I1.185.
DOI: http://dx.doi.org/10.30829/zero.v9i1.25006
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Publisher : Department of Mathematics Faculty of Science and Technology Universitas Islam Negeri Sumatera Utara Medan | |
✉️ Email: zero_journal@uinsu.ac.id 📱 WhatsApp:085270009767 (Admin Official) |
![]() | ![]() | ![]() | ![]() | ![]() |