LASSO Quantile Regression for Predictive Modeling of Dengue Hemorrhagic Fever Incidence in Indonesia
Abstract
Keywords
Full Text:
PDFReferences
I. M. Sudarmaja, I. K. Swastika, L. P. E. Diarthini, I. P. D. Prasetya, and I. M. D. A. Wirawan, “Dengue virus transovarial transmission detection in Aedes aegypti from dengue hemorrhagic fever patients’ residences in Denpasar, Bali,” Vet. World, vol. 15, no. 4, pp. 1149–1153, 2022, doi: 10.14202/vetworld.2022.1149-1153.
A. Mercier et al., “Impact of temperature on dengue and chikungunya transmission by the mosquito Aedes albopictus,” Sci. Rep., vol. 12, no. 1, pp. 1–13, 2022, doi: 10.1038/s41598-022-10977-4.
K. Kesehatan, Demam berdarah masih mengintai, Edisi 165., no. April. 2024.
M. W. Aditya, I. N. Sukajaya, and I. G. A. Gunadi, “Forecasting Jumlah Pasien DBD di BRSUD Kabupaten Tabanan Menggunakan Metode Regresi Linier,” Bali Med. J., vol. 10, no. 1, pp. 1–12, 2023, doi: 10.36376/bmj.v10i1.290.
D. S. Susanti, P. D. Rahayu, and O. Soesanto, “Pemodelan Tingkat Kerawanan Demam Berdarah di Kabupaten Banjar dengan Metode Analisis Regresi Logistik yang terboboti Geografi,” vol. 07, no. 01, pp. 52–64, 2019.
R. Sriningsih, B. W. Otok, and Sutikno, “Determination of the best multivariate adaptive geographically weighted generalized Poisson regression splines model employing generalized cross-validation in dengue fever cases,” MethodsX, vol. 10, no. February, p. 102174, 2023, doi: 10.1016/j.mex.2023.102174.
Annisa, A. Islamiyati, S. Sahriman, J. Massalesse, and U. Sari, “Truncated Spline Quantile Regression Model on Platelet Changes in Dengue Fever Patients Based on Body Temperature,” Commun. Math. Biol. Neurosci., pp. 1–11, 2024.
J. Ma et al., “Poor handling of continuous predictors in clinical prediction models using logistic regression: a systematic review,” J. Clin. Epidemiol., vol. 161, pp. 140–151, 2023, doi: 10.1016/j.jclinepi.2023.07.017.
I. Usman, A. Islamiyati, and E. T. Herdiani, “Quantile Regression Modeling With Group Least Absolute Shrinkage and Selection Operator Classification on Tuberculosis Data,” Commun. Math. Biol. Neurosci., vol. 2024, pp. 1–9, 2024, doi: 10.28919/cmbn/8759.
F. Rios-Avila and M. L. Maroto, “Moving Beyond Linear Regression: Implementing and Interpreting Quantile Regression Models With Fixed Effects,” Sociol. Methods Res., vol. 53, no. 2, pp. 639–682, 2024, doi: 10.1177/00491241211036165.
B. Tantular, Y. Andriyana, and B. N. Ruchjana, “Quantile regression in varying coefficient model of upper respiratory tract infections in Bandung City,” J. Phys. Conf. Ser., vol. 1722, no. 1, 2021, doi: 10.1088/1742-6596/1722/1/012083.
J. P. Gygi, S. H. Kleinstein, and L. Guan, “Predictive overfitting in immunological applications: Pitfalls and solutions,” Hum. Vaccines Immunother., vol. 19, no. 2, 2023, doi: 10.1080/21645515.2023.2251830.
M. S. H. Shaon, T. Karim, M. S. Shakil, and M. Z. Hasan, “A comparative study of machine learning models with LASSO and SHAP feature selection for breast cancer prediction,” Healthc. Anal., vol. 6, no. May, p. 100353, 2024, doi: 10.1016/j.health.2024.100353.
C. Sun, B. Zhu, S. Zhu, L. Zhang, X. Du, and X. Tan, “Risk factors analysis of bone mineral density based on lasso and quantile regression in america during 2015–2018,” Int. J. Environ. Res. Public Health, vol. 19, no. 1, 2022, doi: 10.3390/ijerph19010355.
Y. Sun and F. Lin, “Introduction and Some Recent Advances in Lp Quantile Regression,” pp. 3827–3841, 2024, doi: 10.4236/jamp.2024.1211230.
S. Wang, W. Cao, X. Hu, H. Zhong, and W. Sun, “A Selective Overview of Quantile Regression for Large-Scale Data,” Mathematics, vol. 13, no. 5, pp. 4–6, 2025, doi: 10.3390/math13050837.
W. N. A. Puteri, A. Islamiyati, and A. Anisa, “Penggunaan Regresi Kuantil Multivariat pada Perubahan Trombosit Pasien Demam Berdarah Dengue,” ESTIMASI J. Stat. Its Appl., vol. 1, no. 1, p. 1, 2020, doi: 10.20956/ejsa.v1i1.9224.
G. Sottile and P. Frumento, “Robust estimation and regression with parametric quantile functions,” Comput. Stat. Data Anal., vol. 171, p. 107471, 2022, doi: 10.1016/j.csda.2022.107471.
J. Chen et al., “Study on the effect of occupational exposure on hypertension of steelworkers based on Lasso-Logistic regression model,” Public Health, vol. 239, no. December 2024, pp. 15–21, 2025, doi: 10.1016/j.puhe.2024.12.006.
M. Ouhourane, Y. Yang, A. L. Benedet, and K. Oualkacha, Group penalized quantile regression, vol. 31, no. 3. 2022. doi: 10.1007/s10260-021-00580-8.
C. Ciner, B. Lucey, and L. Yarovaya, “Determinants of cryptocurrency returns: A LASSO quantile regression approach,” Financ. Res. Lett., vol. 49, no. May, p. 102990, 2022, doi: 10.1016/j.frl.2022.102990.
B. P. Statistik, Catalog : 1101001, vol. 53. 2025. [Online]. Available: https://www.bps.go.id/publication/2020/04/29/e9011b3155d45d70823c141f/statistik-indonesia-2020.html
B. Dastjerdy, A. Saeidi, and S. Heidarzadeh, “Review of Applicable Outlier Detection Methods to Treat Geomechanical Data,” Geotechnics, vol. 3, no. 2, pp. 375–396, 2023, doi: 10.3390/geotechnics3020022.
J. Nyangon and R. Akintunde, “Principal component analysis of day-ahead electricity price forecasting in CAISO and its implications for highly integrated renewable energy markets,” Wiley Interdiscip. Rev. Energy Environ., vol. 13, no. 1, 2024, doi: 10.1002/wene.504.
A. El Sheikh and M. R. Abonazel, “A Review of Penalized Regression and Machine Learning Methods in High-Dimensional Data,” vol. 69, no. 1, pp. 250–261, 2025, doi: 10.21608/esju.2025.368665.1080.The.
C. Tian, N. Li, Y. Gao, and Y. Yan, “Analysis of the current status and influencing factors of oral frailty in elderly patients with type 2 diabetes mellitus in Taiyuan, China,” BMC Geriatr., vol. 25, no. 1, 2025, doi: 10.1186/s12877-025-06052-y.
DOI: http://dx.doi.org/10.30829/zero.v9i1.24877
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Publisher : Department of Mathematics Faculty of Science and Technology Universitas Islam Negeri Sumatera Utara Medan | |
✉️ Email: zero_journal@uinsu.ac.id 📱 WhatsApp:085270009767 (Admin Official) |
![]() | ![]() | ![]() | ![]() | ![]() |