Zero Inflated Negative Binomial Regression In Malaria Cases In North Sumatera

Riska Aulia Dalimunthe, Ismail Husein

Abstract


Malaria cases in North Sumatra Province continue to be a public health concern, with regional incidence rates varying. This investigation was designed to assess the variables that contribute to the prevalence of malaria in the province by employing the Zero Inflated Negative Binomial (ZINB) regression model.. The response variable is the number of malaria cases, while the predictor variables are the number of impoverished individuals, population density, percentage of households with proper sanitation, number of healthy homes, and rainfall. For the year 2022, secondary data was acquired from the North Sumatra Provincial Health Office. Excess zero, overdispersion, and multicollinearity tests were conducted prior to the implementation of the ZINB model. The study results indicated that the ZINB model was more suitable than the Poisson and Negative Binomial models. The data indicates that the following variables have a substantial impact on malaria prevalence: an increase in the number of individuals living in poverty (X₁) by 7.8%, an increase in population density (X₂) by 1.8%, an increase in the percentage of households with adequate sanitation facilities (X₃) by 5.9%, and an increase in the percentage of rainfall (X₅) by 3.3%.

Keywords


Malaria, overdispersion, excess zero, North Sumatra, Zero Inflated Negative Binomial

Full Text:

PDF

References


Abdullah Husein, Rusmin Saragih, & Husnul Khair. (2024). Diagnosa Penyakit Malaria Menggunakan Metode Case Base Reasoning (CBR) (Studi Kasus: RSUD Djoelham Kota Binjai). Modem : Jurnal Informatika Dan Sains Teknologi., 2(4), 01–09. https://doi.org/10.62951/modem.v2i4.211

Achmad, N., Payu, M. R. F., & Rahim, Y. (2022). Pemodelan Pneumonia Berat Menggunakan Regresi Zero Inflated Negative Binomial di Gorontalo. Euler : Jurnal Ilmiah Matematika, Sains Dan Teknologi, 10(1), 45–53. https://doi.org/10.34312/euler.v10i1.13990

APRILIA, A. D., & Sofro, A. (2023). Regresi Zero Inflated Poisson Untuk Pemodelan Angka Positif Penyakit Malaria Di Jawa Timur. MATHunesa: Jurnal Ilmiah Matematika, 11(2), 139–146. https://doi.org/10.26740/mathunesa.v11n2.p139-146

Bernad Julvian Zebua, Jetslin Simbolon, & Selviani Damayanti Sipayung. (2024). Tingkat Pengetahuan Mahasiswa Prodi Manajemen Informasi Kesehatan tentang Penyakit Malaria. SEHATMAS: Jurnal Ilmiah Kesehatan Masyarakat, 3(1), 171–176. https://doi.org/10.55123/sehatmas.v3i1.2868

Dwi Putri, A., DEVIANTO, D., & YANUAR, F. (2022). Pemodelan Jumlah Kematian Bayi di Kota Bandung dengan Menggunakan Regresi Zero-Inflated Poisson. Jurnal Matematika UNAND, 11(1), 12. https://doi.org/10.25077/jmu.11.1.12-24.2022

Hasibuan, H. M., & Husein, I. (2025). Journal of Computer Networks , Architecture and High Performance Computing Regression Modeling of Zero-Inflated Negative Binomia ( ZINB ) in Pneum onia Cases in Toddlers in North Sumatra Province Journal of Computer Networks , Architecture and High Perfor. 7(1).

Kusuma, B., Tampubolon, E. U. T., & Alfarisi, S. (2025). Analisis Tingkat Kriminalitas di Jawa Tengah dengan Pendekatan Distribusi Poisson dan Binomial Negatif. AKSIOMA : Jurnal Sains Ekonomi Dan Edukasi, 2(1), 314–334. https://doi.org/10.62335/58brp592

Nuraeni, A., Martha, S., & Aprizkiyandari, S. (2022). Penerapan Regresi Zero-Inflated Negative Binomial ( Zinb ) Pada Data Kecelakaan Lalu Lintas Di Kota Pontianak. 11(1), 89–96.

Nurhidayah, F., & Muthiah Nur Angriany, A. (2025). Pendekatan Zero-Inflated Poisson Inverse Gaussian dalam Pemodelan Kasus Malaria di Puskesmas Kota Makassar. ESTIMASI: Journal of Statistics and Its Application, 6(1), 101–115. https://doi.org/10.70561/ejsa.v6i1.43164

Purnama, D. I. (2021). Comparison of Zero Inflated Poisson (ZIP) Regression, Zero Inflated Negative Binomial Regression (ZINB) and Binomial Negative Hurdle Regression (HNB) to Model Daily Cigarette Consumption Data for Adult Population in Indonesia. Jurnal Matematika, Statistika Dan Komputasi, 17(3), 357–369. https://doi.org/10.20956/j.v17i3.12278

Rasyidin, M. F., Anggraini, D., Muttaqin, H., & Selatan, K. (2023). RAGAM: Journal of Statistics and Its Application Volume 02 Nomor 02, Desember 2023. 02(2017), 1–15.

Ruliansyah, A., & Pradani, F. Y. (2020). Perilaku-Perilaku Sosial Penyebab Peningkatan Risiko Penularan Malaria di Pangandaran. Buletin Penelitian Sistem Kesehatan, 23(2), 115–125. https://doi.org/10.22435/hsr.v23i2.2797

Salsabila, S. W., & Efendi, A. (2025). Zero Inflated Negative Binomial ( ZINB ) Regression : Application to the Pneumonia Study and Simulation under Several Scenarios. 10(1), 457–468.

Sugiarta, C. K., Sumampouw, J. O., & Pinontoan, O. R. (2024). Annual Parasite Incidence Malaria di Kota Bitung tahun 2021-2023. Sam Ratulangi Journal

WHO, "Malaria," World Health Organization, 2023. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/malaria




DOI: http://dx.doi.org/10.30829/jistech.v10i1.25658

Refbacks

  • There are currently no refbacks.



Current Indexing

 

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.