The Effect of Curcumin on 5-Lipoxygenase (5-LO) Levels in the Hearts of Wistar Rats (Rattus norvegicus) as a Preeclampsia Model

Berliana Noviasih Pertiwi, Lina Zafirah Sukaji, Bambang Rahardjo, Linda Ratna Wati

Abstract


Excessive activation of the 5-lipoxygenase (5-LO) pathway plays a pivotal role in promoting inflammation and endothelial dysfunction, thereby aggravating cardiovascular complications in preeclampsia. Curcumin, a natural polyphenolic compound with well-established anti-inflammatory and antioxidant properties, has been suggested to suppress 5-LO activity. This study aimed to evaluate the effect of curcumin administration on cardiac 5-LO levels in pregnant Wistar rats with an L-NAME?induced preeclampsia model. A true experimental post-test?only control group design was conducted using 25 pregnant Wistar rats divided into five groups, consisting of a negative control, a positive control receiving L-NAME, and three treatment groups administered curcumin at doses of 30, 50, or 100 mg/kg body weight alongside L-NAME. Preeclampsia was induced by L-NAME administration at a dose of 125 mg/kg body weight from gestational day 13 to 19, while curcumin was given orally during the same period. Cardiac 5-LO levels were measured from serum samples using enzyme-linked immunosorbent assay (ELISA) and analyzed using one-way ANOVA followed by Tukey?s post hoc test with a significance level of p < 0.05. The results showed a marked elevation of cardiac 5-LO levels in the positive control group compared to the negative control. Curcumin administration significantly reduced 5-LO levels at all tested doses, with the most pronounced effect observed at 100 mg/kg body weight. Furthermore, a very strong negative correlation was identified between curcumin dose and cardiac 5-LO levels (r = −0.871), indicating a clear dose-dependent response. These findings demonstrate that curcumin effectively suppresses cardiac 5-LO levels in a dose-dependent manner in a preeclampsia rat model and highlight its potential clinical relevance as a natural adjunct therapy for mitigating cardiovascular inflammation and endothelial dysfunction associated with preeclampsia


Keywords: Curcumin, 5-Lipoxygenase, Inflammation, Heart, Preeclampsia


Full Text:

PDF

References


Abbas, A. K., Lichtman, A. H. H., & Pillai, S. (2014). Cellular and Molecular Immunology, Eighth Edition. 544. https://www-clinicalkey-com.ep.fjernadgang.kb.dk/#!/browse/book/3-s2.0-C20130013230

Chang, S. A., Khakh, P., Janzen, M., Lee, T., Kiess, M., Rychel, V., & Grewal, J. (2022). Trending Cardiac Biomarkers During Pregnancy in Women With Cardiovascular Disease. Circulation: Heart Failure, 15(8), E009018. https://doi.org/10.1161/circheartfailure.121.009018/asset/56f590ac-e341-4d9b-8424-ad2180915ab3/assets/graphic/circheartfailure.121.009018.fig05.jpg

Du, F., Yuelling, L., Lee, E. H., Wang, Y., Liao, S., Cheng, Y., Zhang, L., Zheng, C., Peri, S., Cai, K. Q., Ng, J. M. Y., Curran, T., Li, P., & Yang, Z. J. (2019). Leukotriene synthesis is critical for medulloblastoma progression. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 25(21), 6475. https://doi.org/10.1158/1078-0432.CCR-18-3549

Fadine, W., Lelo, A., Wijaya, D. W., & Lumbanraja, S. N. (2020). Curcumin And Its Effect On Preeclampsia: As Anti-Inflammatory, Analgesic, And Anticoagulant. International Journal of Current Pharmaceutical Research, 43?47. https://doi.org/10.22159/ijcpr.2020v12i2.37485

Gadnayak, A., Dehury, B., Nayak, A., Jena, S., Sahoo, A., Panda, P. C., Ray, A., & Nayak, S. (2022). ?Mechanistic insights into 5-lipoxygenase inhibition by active principles derived from essential oils of Curcuma species: Molecular docking, admet analysis and molecular dynamic simulation study. plos one, 17(7), e0271956?e0271956. https://doi.org/10.1371/journal.pone.0271956

Guan, X., Fu, Y., Liu, Y., Cui, M., Zhang, C., Zhang, Q., Li, C., Zhao, J., Wang, C., Song, J., & Dong, J. (2023). The role of inflammatory biomarkers in the development and progression of pre-eclampsia: a systematic review and meta-analysis. Frontiers in Immunology, 14, 1156039. https://doi.org/10.3389/fimmu.2023.1156039

Ives, C. W., Sinkey, R., Rajapreyar, I., Tita, A. T. N., & Oparil, S. (2020). Preeclampsia?Pathophysiology and Clinical Presentations: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 76(14), 1690?1702. https://doi.org/10.1016/j.jacc.2020.08.014

Kahnt, A. S., H?fner, A. K., & Steinhilber, D. (2024). The role of human 5-Lipoxygenase (5-LO) in carcinogenesis - a question of canonical and non-canonical functions. Oncogene 2024 43:18, 43(18), 1319?1327. https://doi.org/10.1038/s41388-024-03016-1

Liu, T., & Ai, D. (2025). Roles of Lipoxygenases in Cardiovascular Diseases. Journal of Cardiovascular Translational Research 2025 18:3, 18(3), 599?610. https://doi.org/10.1007/S12265-025-10605-2

Mulyani, Y., Wulandari, G., Sulaeman, A., Keilmuan Farmakologi, K., Farmasi, F., Bhakti Kencana, U., Kata Kunci, B., longa, C., & Gen, E. (2021). Review: peran kunyit (curcuma longa) sebagai terapi hipertensi dan mekanismenya terhadap ekspresi gen. Original Article MFF, 25(2), 51?58. https://doi.org/10.20956/mff.v25i2.13287

Nugroho, S. W., Fauziyah, K. R., Sajuthi, D., & Darusman, H. S. (2018). Profil Tekanan Darah Normal Tikus Putih (Rattus norvegicus) Galur Wistar dan Sprague-Dawley (The Profile of Normal Blood Pressure Laboratory Rat (Rattus norvegicus) Strain Wistar and Sprague-Dawley). acta veterinaria indonesiana, 6(2), 32?37. http://www.journal.ipb.ac.id/indeks.php/actavetindones

Ortega, M. A., Garcia-Puente, L. M., Fraile-Martinez, O., Pekarek, T., Garc?a-Montero, C., Bujan, J., Pekarek, L., Barrena-Bl?zquez, S., Gragera, R., Rodr?guez-Rojo, I. C., Rodr?guez-Benitez, P., L?pez-Gonz?lez, L., D?az-Pedrero, R., ?lvarez-Mon, M., Garc?a-Honduvilla, N., De Le?n-Luis, J. A., Bravo, C., & Saez, M. A. (2024). Oxidative Stress, Lipid Peroxidation and Ferroptosis Are Major Pathophysiological Signatures in the Placental Tissue of Women with Late-Onset Preeclampsia. Antioxidants, 13(5). https://doi.org/10.3390/antiox13050591

Panahi, Y., Hosseini, M. S., Khalili, N., Naimi, E., Majeed, M., & Sahebkar, A. (2015). Antioxidant and anti-inflammatory effects of curcuminoid-piperine combination in subjects with metabolic syndrome: A randomized controlled trial and an updated meta-analysis. Clinical Nutrition, 34(6), 1101?1108. https://doi.org/10.1016/j.clnu.2014.12.019

Pourbagher-Shahri, A. M., Farkhondeh, T., Ashrafizadeh, M., Talebi, M., & Samargahndian, S. (2021). Curcumin and cardiovascular diseases: Focus on cellular targets and cascades. Biomedicine & Pharmacotherapy, 136, 111214. https://doi.org/10.1016/j.biopha.2020.111214

Rahardjo, B., Dewi, R. F., Wayan, I., Wiyasa, A., Handayani, P., Prasetyorini, N., & Wibisono, H. (2024). Effect of Curcumin on Nitric Oxide and Endothelin-1 Levels in L-NAME-Induced Preeclamptic Wistar Rat. Majalah Kedokteran Bandung, 56(4), 263?271. https://doi.org/10.15395/mkb.v56.3700

Rahnavard, M., Hassanpour, M., Ahmadi, M., Heidarzadeh, M., Amini, H., Javanmard, M. Z., Nouri, M., Rahbarghazi, R., & Safaie, N. (2019). Curcumin ameliorated myocardial infarction by inhibition of cardiotoxicity in the rat model. Journal of Cellular Biochemistry, 120(7), 11965?11972. https://doi.org/10.1002/JCB.28480

Rana, S., Lemoine, E., Granger, J., & Karumanchi, S. A. (2019). Preeclampsia: Pathophysiology, Challenges, and Perspectives. Circulation Research, 124(7), 1094?1112. https://doi.org/10.1161/circresaha.118.313276

Santos, L. L., Wertaschnigg, D., Rolnik, D. L., Da Silva Costa, F., Syngelaki, A., Dimitriadis, E., & Nicolaides, K. H. (2021). Serum leukotriene B4 and hydroxyeicosatetraenoic acid in the prediction of pre-eclampsia. Placenta, 103, 76?81. https://doi.org/10.1016/J.placenta.2020.10.007

Sun, Q. Y., Zhou, H. H., & Mao, X. Y. (2019). Emerging Roles of 5-Lipoxygenase Phosphorylation in Inflammation and Cell Death. Oxidative Medicine and Cellular Longevity, 2019, 2749173. https://doi.org/10.1155/2019/2749173

Tossetta, G., Fantone, S., Giannubilo, S. R., & Marzioni, D. (2021). The Multifaced Actions of Curcumin in Pregnancy Outcome. Antioxidants 2021, Vol. 10, Page 126, 10(1), 126. https://doi.org/10.3390/antiox10010126

Veri, N., Lajuna, L., & Mutiah, C. (2024). Preeeklamsia: patofisiologi, diagnosis, skrining, pencegahan dan penatalaksanaan Preeclamsia: pathophysiology, diagnosis, screening, preventive and management.

Wang, Y., Li, B., & Zhao, Y. (2022). Inflammation in Preeclampsia: Genetic Biomarkers, Mechanisms, and Therapeutic Strategies. Frontiers in Immunology, 13. https://doi.org/10.3389/fimmu.2022.883404

Winardi, D. O., Alliyah, S. A., Fadilah, S. N., Jessyca Sirait, Putra, H. B. A., Neli, Nurhanifah Puspitadewi, Muchtaridi, & Ade Zuhrotun. (2023). In Silico and In Vitro Studies on Compounds in Turmeric (Curcuma domestica) as Anti-inflammatory for Cyclooxygenase-2 (COX-2). http://jurnal.unpad.ac.id/ijpst/

Yang, C., Baker, P. N., Granger, J. P., Davidge, S. T., & Tong, C. (2023). Long-Term Impacts of Preeclampsia on the Cardiovascular System of Mother and Offspring. In Hypertension (Vol. 80, Issue 9, pp. 1821?1833). Lippincott Williams and Wilkins. https://doi.org/10.1161/hypertensionaha.123.21061

Zanganeh, M., Mazloomi, S. N., Alijanpour, E., & Jabbari, A. (2020). Curcumin and Pregnancy Problems: a Narrative Review of Curcumin?s Effect on Preeclampsia. Journal of Clinical and Basic Research, 4(4), 1?7. https://doi.org/10.52547/jcbr.4.4.1




DOI: http://dx.doi.org/10.30829/contagion.v7i3.25815

Refbacks

  • There are currently no refbacks.


Copyright (c) 2026 Berliana Noviasih Pertiwi, Lina Zafirah Sukaji, Bambang Rahardjo, Linda Ratna Wati

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Contagion: Scientific Periodical Journal of Public Health and Coastal Health by Program Studi Ilmu Kesehatan Masyarakat is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.