Penerapan YOLO dan OCR untuk Deteksi dan Klasifikasi Plat Nomor Kendaraan di Universitas Malikussaleh
Abstract
Automatic vehicle license plate recognition plays a vital role in advancing intelligent transportation systems, especially in enhancing traffic monitoring, parking automation, and security management. This study explores the implementation of the You Only Look Once (YOLO) algorithm and Optical Character Recognition (OCR) for detecting and classifying vehicle license plates based on their regional codes at Malikussaleh University. YOLO is used for real-time detection of license plate regions, while EasyOCR extracts alphanumeric characters from preprocessed plate images (grayscale, sharpening, thresholding). The OCR output undergoes character correction and format validation using regular expressions. The recognized codes are then mapped to regional origins based on official Indonesian license plate regulations. Experimental results show that the system effectively detects and classifies license plates with high accuracy, even under diverse image conditions. Beyond enhancing vehicle identification efficiency, the system offers potential applications in automated campus surveillance and broader public area monitoring. This research contributes to the development of machine learning-based recognition systems and paves the way for future studies in predictive traffic analytics and smart transportation infrastructure.
Keywords: YOLO, OCR, license plate detection, regional classification, vehicle identification
References
awan aprilino and I. H. Al Amin, “IMPLEMENTASI ALGORITMA YOLO DAN TESSERACT OCR PADA SISTEM DETEKSI PLAT NOMOR OTOMATIS”.
J. Mecaj, “The Impact of OCR Technology on the Efficiency of Vehicle License Plate Control and Traffic Safety in Tirana”, doi: 10.5281/zenodo.10725931.
N. Qashthalani Iskandar and A. Ghofilin, “Fuse-teknik Elektro Narrative Review: Penerapan Kecerdasan Buatan untuk Sistem Deteksi Kendaraan di Smart City: Studi Mengenai YOLOv8 dan Optical Character Recognition”, [Online]. Available: https://journal.uniga.ac.id/index.php/JFT/index
A. Degale Desta and C. Jian, “Enhancing YOLOv8 for Vehicle Detection in Intelligent Traffic Management.”
L. Satya, M. R. D. Septian, M. W. Sarjono, M. Cahyanti, and E. R. Swedia, “SISTEM PENDETEKSI PLAT NOMOR POLISI KENDARAAN DENGAN ARSITEKTUR YOLOV8,” Sebatik, vol. 27, no. 2, pp. 753–761, Dec. 2023, doi: 10.46984/sebatik.v27i2.2374.
Anthony, Herman, and A. Yulianto, “Pengembangan Sistem Pengenalan Plat Nomor Indonesia Menggunakan YOLOv8 dan EasyOCR,” Jurnal Ilmiah Komputasi, vol. 23, no. 4, Dec. 2024, doi: 10.32409/jikstik.23.4.3659.
D. J. Marcelleno and M. P. K. Putra, “PERFORMANCE EVALUATION OF YOLOV8 IN REAL-TIME VEHICLE DETECTION IN VARIOUS ENVIRONMENTAL CONDITIONS,” Jurnal Teknik Informatika (Jutif), vol. 6, no. 1, pp. 269–279, Feb. 2025, doi: 10.52436/1.jutif.2025.6.1.3916.
H. Moussaoui et al., “Enhancing automated vehicle identification by integrating YOLO v8 and OCR techniques for high-precision license plate detection and recognition,” Sci Rep, vol. 14, no. 1, Dec. 2024, doi: 10.1038/s41598-024-65272-1.
P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, “A Review of Yolo Algorithm Developments,” in Procedia Computer Science, Elsevier B.V., 2021, pp. 1066–1073. doi: 10.1016/j.procs.2022.01.135.
A. A. Awoseyi et al., “Enhancing car plate recognition with convolutional neural network and regular expressions correction,” IAES International Journal of Artificial Intelligence, vol. 13, no. 2, pp. 2071–2078, Jun. 2024, doi: 10.11591/ijai.v13.i2.pp2073-2080.
R. Illmawati and Hustinawati, “YOLO v5 untuk Deteksi Nomor Kendaraan di DKI Jakarta YOLO V5 for Vehicle Plate Detection in DKI Jakarta,” 2023. [Online]. Available: www.kaggle.com
N. Salsabila and S. Sriani, “Enhancing Automated Vehicle License Plate Recognition with YOLOv8 and EasyOCR,” Journal of Information Systems and Informatics, vol. 6, no. 3, pp. 1577–1597, Sep. 2024, doi: 10.51519/journalisi.v6i3.848.
Salma, M. Saeed, R. Ur Rahim, M. Gufran Khan, A. Zulfiqar, and M. T. Bhatti, “Development of ANPR Framework for Pakistani Vehicle Number Plates Using Object Detection and OCR,” Complexity, vol. 2021, 2021, doi: 10.1155/2021/5597337.
DOI: http://dx.doi.org/10.30829/algoritma.v9i2.25636
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indexing:
![]() | ![]() | ![]() | ![]() |
|
Algoritma: Jurnal Ilmu Komputer dan Informatika
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.





