Studi Pengelompokan Multimetode Provinsi di Sumatera Utara Menggunakan Pendekatan PCA dan K-Means
Abstract
This study aims to classify regions in North Sumatra based on a set of social and economic indicators by applying a multi-method clustering approach. Principal Component Analysis (PCA) is employed to reduce data dimensionality and identify the most influential variables, while the K-Means algorithm is used to form clusters based on similarity of characteristics. The results indicate that the combination of PCA and K-Means can cluster provinces or regions more efficiently and interpretably. The resulting clusters reflect patterns of similarity among regions in terms of social and economic development, thus providing a basis for formulating more targeted regional development policies. These findings demonstrate that a multi-method approach can yield more comprehensive results in spatial data clustering.
Keywords: Clustering, Principal Component Analysis (PCA), K-Means, multi-method, North Sumatra.
Full Text:
PDFReferences
A. I. Silitonga, Z. A. Nabila, C. Rizkia, Z. Lubis, and N. Safitri, “KLASTERISASI GIZI BURUK DAN STUNTING DI PROVINSI SUMATERA UTARA MENGGUNAKAN K-MEANS CLUSTERING,” METHODIKA, vol. 10, no. 2, pp. 13–18, 2024.
S. R. Nasution, R. F. Sari, and R. Widyasari, “Analisis Klaster dengan Metode K-Means Pada Penyebaran Kasus Covid-19 Berdasarkan Kabupaten/Kota di Sumatera Utara,” G-Tech J. Teknol. Terap., vol. 7, no. 3, pp. 1308–1314, 2023, doi: 10.33379/gtech.v7i3.2904.
Edisman Rahul Gonjales Siahaan, “Implementation Of The K-Means Method In Grouping Districts And Cities In North Sumatra On Social Welfare Problems,” J. Artif. Intell. Eng. Appl., vol. 1, no. 2, pp. 168–173, 2022, doi: 10.59934/jaiea.v1i2.86.
D. Nasution, D. N. Sirait, I. Wardani, and Dwiyanto, “Optimasi Jumlah Cluster Metode K-Medoids Berdasarkan Nilai DBI Pada Pengelompokkan Data Luas Tanaman Dan Produksi Kelapa Sawit Di Sumatera Utara,” Kumpul. J. Ilmu Komput., vol. 9, no. 2, p. 381, 2022.
A. A. Lubis and T. M. Diansyah, “K-Means Cluster as a Reading Interest Analysis Tool in the North Sumatra Provincial Library,” J. Artif. Intell. Eng. Appl., vol. 4, no. 2, 2025.
E. Yolanda, “Penerapan Algoritma K-Means Clustering Untuk Pengelompokan Data Pasien Rehabilitasi Narkoba,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 1, pp. 182-`191, 2023, doi: 10.30865/klik.v4i1.1107.
R. Kurniawan, M. S. Hasibuan, and R. Hasibuan, “Klasterisasi Wilayah Prioritas Vaksin Menggunakan Algoritma K-MeansClustering,” Media Online, vol. 4, no. 3, pp. 1585–1592, 2023, doi: 10.30865/klik.v4i3.1334.
H. Sibarani, Solikhun, W. Saputra, I. Gunawan, and Z. M. Nasution, “Penerapan Metode K-Means Untuk Pengelompokkan Kabupaten/Kota Di Provinsi Sumatera Utara Berdasarkan Indikator Indeks Pembangunan Manusia,” JATI (Jurnal Mhs. Tek. Inform., vol. 6, no. 1, pp. 154–161, 2022, doi: 10.36040/jati.v6i1.4590.
S. U. Tarigan, S. Saniman, and M. Yetri, “Klasterisasi Data Penanganan Dan Pelayanan Kesehatan Masyarakat Menggunakan Algoritma K-Means,” J. Sist. Inf. Triguna Dharma (JURSI TGD), vol. 1, no. 3, p. 193, 2022, doi: 10.53513/jursi.v1i3.5223.
W. Andriyani, A. H. Nasyuha, Y. Syahra, and B. Triaji, “Clustering Analysis of Poverty Levels in North Sumatra Province Using the Application of Data Mining with the K-Means Algorithm,” J. Media Inform. Budidarma, vol. 7, no. 4, p. 1971, 2023, doi: 10.30865/mib.v7i4.6867.
S. E. Wardani, S. Z. Harahap, and R. Muti’ah, “Implementation of the K-Means Method for Clustering Regency/City in North Sumatra based on Poverty Indicators,” Sinkron, vol. 8, no. 3, pp. 1429–1442, 2024, doi: 10.33395/sinkron.v8i3.13720.
R. I. Syahputri, “Fuzzy C-Means Clustering Technique Analysis of North Sumatra Province’s District/City Classification Based on Community Social Welfare Level,” JISTech (Journal Islam. Sci. Technol., vol. 9, no. 1, pp. 53–57, 2024.
R. F. Purba, A. A. Panjaitan, L. T. Butar-butar, J. F. E. D. L. Sitorus, R. Rumapea, and I. M. S. S, “IMPLEMNTASI K-MEANS CLUSTERING UNTUK MENENTUKAN TINGKAT BENCANA RAWAN BANJIR DI WILAYAH SUMATERA UTARA,” TAMIKA, vol. 4, no. 2, pp. 210–215, 2024.
C. J. Silalahi, A. Situmorang, and J. F. Naibaho, “Implementasi Metode K-Means Clustering Untuk Memetakan Daerah Potensial Penghasil Padi di Provinsi Sumatera Utara,” Methotika J. Ilm. Tek. Inform., vol. 2, no. 2, pp. 49–57, 2022, [Online]. Available: http://ojs.fikom-methodist.net/index.php/methotika
S. P. Simanjorang and M. Yanti, “Pengelompokan Kabupaten/Kota di Sumatera Utara Menggunakan Algoritma Average Linkage dan K-Means Berdasarkan Indikator Pendidikan,” Emerg. Stat. Data Sci. J., vol. 1, no. 3, pp. 406–414, 2023, doi: 10.20885/esds.vol1.iss.3.art46.
DOI: http://dx.doi.org/10.30829/algoritma.v9i2.25017
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indexing:
![]() | ![]() | ![]() | ![]() |
|
Algoritma: Jurnal Ilmu Komputer dan Informatika
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.





