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 The classical Black–Scholes model assumes a frictionless market, which often 
leads to the undervaluation of option premiums when transaction costs are 
present. This study prices European call options under proportional transaction 
costs using the nonlinear Barles–Soner framework and a semi-discretization–
based numerical approach. Using historical stock data from PT XYZ (an 
anonymized Indonesian equity), the results show that transaction costs 
significantly increase effective volatility and generate systematic deviations from 
classical Black–Scholes prices. In particular, option premiums increase by IDR 
392.33 and IDR 776.66 for transaction cost parameters of 0.015 and 0.030, 
respectively, compared with the frictionless benchmark. These findings confirm 
that ignoring transaction costs leads to substantial underpricing and that the 
proposed framework provides a more realistic and conservative valuation for 
hedging and risk management in emerging markets. 
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1. INTRODUCTION 
 In modern financial markets, derivative instruments, particularly European options, play a pivotal role in 
hedging and speculation. Since its introduction in 1973, the Black–Scholes (B–S) model has served as the 
standard framework for option pricing [1]. This model provides analytical solutions under ideal market 
assumptions, including constant volatility and frictionless trading. However, these assumptions are often violated 
in real market conditions, especially due to transaction costs arising from periodic portfolio rebalancing [2], [3]. 
 Ignoring transaction costs can lead to significant pricing inaccuracies and discrepancies between theoretical 
values and actual market prices. To address this limitation, several studies have proposed modifying the pricing 
framework by incorporating effective volatility [2], [4]. A major advancement was introduced by Barles and Soner 
(1998), who formulated a nonlinear Black–Scholes equation based on an exponential utility approach, in which 
volatility becomes a function of the option price’s second derivative. 
 However, the nonlinearity of the Barles–Soner model precludes closed-form analytical solutions and 
necessitates numerical approximation. Standard explicit finite difference methods are commonly employed, but 
they often suffer from strict stability conditions and convergence difficulties, particularly under the strong 
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nonlinearity induced by transaction costs. [7] & [11] subsequent studies, such as [9], developed stable and 
consistent numerical schemes, these works primarily focused on methodological aspects using synthetic data or 
stylized parameter settings. Other investigations, including [12], explored alternative finite difference strategies 
and stability improvements, yet remained within abstract numerical frameworks without direct application to real 
market data. 
 Most of the existing literature concentrates on developed financial markets or purely numerical 
benchmarks. There is limited empirical evidence on how the Barles–Soner model behaves when applied to 
emerging markets, where transaction costs, liquidity frictions, and discrete trading effects are often more 
pronounced. Consequently, the practical relevance of nonlinear option pricing models for markets such as 
Indonesia remains underexplored. 
 To bridge this gap, this study applies a semi-discretization approach based on the Method of Lines to the 
nonlinear Barles–Soner equation and implements it using historical stock data from PT XYZ. Unlike previous 
works that primarily emphasize methodological development, this research focuses on empirical deployment and 
interpretation in an emerging-market setting. 
 The objective of this study is to evaluate European call option prices under proportional transaction costs 
using a robust numerical framework and to quantify the deviation from the classical Black–Scholes model when 
applied to Indonesian stock data. By doing so, this work demonstrates how neglecting transaction costs can lead 
to systematic underpricing and highlights the practical relevance of nonlinear option pricing models for risk 
management in emerging markets. 
 
2. RESEARCH METHOD 
2.1 Research Flow 

This study is applied with an applied quantitative approach that focuses on the determination of European 
option pricing with consideration of transaction costs through the application of the semi-discretization method 
on the Barles-Soner nonlinear model (Barles and Soner, 1998; [7]. The research process is carried out 
systematically through five main stages, namely literature review, stock data collection, data processing and 
parameter estimation, mathematical model development, and numerical option assessment [7]. The research 
framework is displayed more clearly through the flowchart presented in Figure 1. 

 
Figure 1. Research Flow 

The research procedure is carried out by being able to follow the systematic workflow described in Figure 
1. The study began with a literature review regarding option pricing and numerical methods then continued with 
the collection of data on the daily closing price of PT XYZ shares. Raw data is processed to estimate historical 
volatility parameters. Furthermore, the mathematical model is constructed using the Barles-Soner framework 
and solved numerically through the Difference Method with a semi-discretized scheme. The numerical model is 
first validated by providing a comparison of the results against the Black-Scholes analytical solution before it is 
used to simulate the option price that takes into account transaction costs [1], [7]. 
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In addition to the procedural workflow, particular attention is given to the selection of numerical 
discretization parameters, as they directly affect the stability and accuracy of the simulation results. 

In numerical simulations, the choice of spatial and temporal discretization plays a crucial role in ensuring 
stability and accuracy. Therefore, the grid parameters in this study are not selected arbitrarily. Several 
combinations of spatial grid sizes and time steps are tested in preliminary experiments. The spatial domain of 
the stock price is truncated to a sufficiently large interval [0, S_max], where S_max is chosen so that further 
enlargement of the domain produces no visible change in the computed option price. 

For each domain setting, multiple pairs of (𝛥𝑆, 𝛥𝑡) are examined. The numerical scheme is considered 
acceptable when: (i) the solution remains stable over the entire time horizon, and (ii) further refinement of either 
the spatial grid or the time step results in only negligible changes in the option price. This empirical convergence 
criterion is adopted because explicit theoretical stability bounds for the nonlinear Barles–Soner equation are 
difficult to derive. 

The final discretization parameters reported in this study correspond to the smallest grid sizes for which the 
numerical solution becomes grid-independent within a prescribed tolerance. This procedure ensures that the 
reported option prices are not artifacts of a particular discretization choice, but reflect stable and convergent 
numerical behavior.                                                                                                                                                                                                                                                                                       

2.2 Data Processing and Parameter Estimation 
 The primary data used in this study consist of the daily closing stock prices of  PT XYZ, an anonymized 
Indonesian listed company, obtained from the Yahoo Finance database [16]. The dataset covers a one-year 
trading period from December 30, 2024, to December 24, 2025. This study focuses on a single underlying asset 
in order to provide a clear and controlled numerical illustration of the Barles–Soner model. Consequently, the 
results are asset-specific and should not be interpreted as universally representative of all stocks or market 
conditions. 
 To implement the Barles–Soner framework, the historical volatility parameter, which represents the 
magnitude of asset price fluctuations, must be estimated from the raw data. First, the daily logarithmic return is 
computed using the standard formula described in [17], as given in Equation (1). The standard deviation of the 
daily returns is then calculated and annualized using Equation (2) to obtain the baseline volatility 𝜎!. 
 The transaction cost parameter 𝑎in the Barles–Soner model is not directly observable in market data and 
is therefore treated as an exogenous control parameter. In this study, several representative values of 𝑎are 
considered to reflect different market frictions, namely the frictionless case (𝑎 = 0), a low transaction cost 
scenario, and a high transaction cost scenario. This scenario-based calibration follows common practice in the 
numerical literature on nonlinear Black–Scholes equations and allows the qualitative impact of transaction costs 
to be examined. 
 It is important to note that the present framework focuses solely on proportional transaction costs and does 
not explicitly account for other market frictions such as bid–ask spreads, liquidity constraints, or discrete trading 
effects. Moreover, robustness across different time windows or market regimes is not explored. These 
simplifications are adopted to maintain a tractable numerical setting and to highlight the core effect of transaction 
costs within the Barles–Soner model.  
 

The daily logarithmic return is computed to measure relative price changes between consecutive trading 
days. The log-return for day 𝑡is defined by Equation (1). 

𝑟" = ln . #!
#!"#

/      (1) 

 
Where 𝑆" denotes the closing stock price on day and 𝑆"$% is the closing price on the previous day. A sample 

of the daily log-return computation based on Equation (1) is presented in Table 1 using actual stock price data. 

Table 1. Sample of Daily Stock Return Calculation for PT XYZ 

Date Closing Price (𝑺𝒕) Previous Price (𝑺𝒕$𝟏) 
Log Return  

𝒓𝒕 = 𝐥𝐧( 𝑺𝒕/𝑺𝒕$𝟏) 
 

30-Dec-2024 9675 9800 −0.0128 
02-Jan-2025 9900 9675 0.0230 
03-Jan-2025 9850 9900 −0.0051 
06-Jan-2025 9675 9850 −0.0179 
07-Jan-2025 9525 9675 −0.0156 
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After obtaining the daily returns, the standard deviation (𝑠) is computed to measure the dispersion of the 
asset's price movements. The annualized volatility is computed to measure the dispersion of the asset's price 
movements [17]. The annualized volatility (𝜎) is then derived by scaling the standard deviation with the square 
root of the number of trading days in a year (𝑘 ≈ 252), following the volatility estimation technique in option 
pricing literature [16]. 

𝜎 = 𝑠√252       (2) 

Based on the computational results from the dataset, the annualized volatility is estimated at 29.49%. This 
value, along with the latest closing price (𝑆!) of IDR	8,025 and a risk-free interest rate (𝑟) of 6% , serves as the 
baseline input for the numerical simulation. 

2.3 Mathematical Model 
2.3.1 Non-Linear Blach-Scholes Equation 

The classical Black–Scholes model [9] derived under the assumption of a frictionless market with constant 
volatility and continuous hedging. To incorporate the influence of transaction costs, Barles and Soner (1998) 
introduced a nonlinear adjustment based on the principle of utility maximization. The modified partial 
differential equation (PDE) governing the price 𝑉(𝑆, 𝑡) of a European call option is given by Equation (3): 

()
("
+ %

*
𝜎*(𝑆, 𝑡, 𝑉##)𝑆*

($)
(#$

+ 𝑟𝑆 ()
(#
− 𝑟𝑉 = 0   (3) 

where : 
𝑆 : Underlying Asset Price, 
𝑡	: time,  
𝑟	: risk-free interest rate, 
𝜎(𝑆, 𝑡, 𝑉##)	: Nonlinear Volatility 

𝑉## =
($)
(#$
	 denotes the gamma of the option 

Equation (3) shows that the evolution of the option price is influenced by both the stochastic diffusion 
component arising from stock price fluctuations and the deterministic growth induced by the risk-free interest 
rate and discounting effects.  

2.3.2 Volatility as a Representation of Transaction Costs 
In the Barles–Soner model, volatility 𝜎no longer remains constant but becomes a nonlinear function of the 

second derivative of the option price (𝑉##). Transaction costs are incorporated through an adjustment of volatility, 
which is expressed by Equation (4): 

𝜎* = 𝜎!*(1 + ΨL𝑒+(-$")𝑎*𝑆*𝑉##N)     (4) 
 
where : 
𝜎! is the basic volatility without transaction costs, 
𝑎 = 𝜇P𝛾𝑁	is a parameter of transaction cost intensity and risk aversion, 
Ψ(⋅) is a volatility correction function that satisfies an implicit nonlinear differential equation. 

 
In the numerical implementation, the volatility correction function 𝚿(⋅)is not solved as a continuous 

differential problem, but evaluated pointwise using the standard iterative procedure proposed by Barles and 
Soner (1998) and adopted in subsequent numerical studies [7]. At each time step and spatial node, the argument 
of 𝚿 is computed from the current gamma approximation, and the corresponding corrected volatility is obtained 
through a fixed-point iteration until convergence within a prescribed tolerance. In practice, only a few iterations 
are required, and the procedure remains computationally efficient while preserving the nonlinear structure of the 
model 

2.3.3 Transformation of Initial Value Problems 
To simplify the numerical problem solving, the boundary value problem (because the payoff condition is 

known at maturity 𝑡 = 𝑇) is transformed into an initial value problem , as commonly applied in numerical 
solutions of nonlinear Black–Scholes equations using the semi-discretization approach [7]. The transformation 
is performed using the time variable 𝜏 = 𝑇 − 𝑡 and the function 𝑈(𝑆, 𝜏) = 𝑉(𝑆, 𝑡) Which allows the problem to 
be solved backward in time in a stable numerical framework [7], [12]. 	 
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Under this transformation, the governing equation can be rewritten in the form given by Equation (5): 

𝑈/ =
#$

*
𝜎*𝑈## + 𝑟𝑆𝑈# − 𝑟𝑈      (5) 

For domain and 𝑆 > 0 and 0 < 𝜏 ≤ 𝑇 

2.3.4 Initial and Boundary Conditions 
Initial Conditions (Payoff Option) 

Since the instrument analyzed in this study is a European call option, the option value at maturity depends 
solely on the difference between the stock price and the strike price. The payoff function at maturity is defined 
by Equation (6), following the standard Black–Scholes framework [1]: 

𝑉(𝑆, 𝑇) = max(𝑆 − 𝐸, 0)      (6) 

where 𝐸denotes the strike price 

This condition is used as a starting point in numerical simulation because the calculation of the solution can 
be done backwards from the due date to the initial time. 

Stock Price Limit Conditions 
To ensure that the numerical solution remains realistic, boundary conditions are imposed on the stock 

price domain. As the stock price approaches zero, the option value should also approach zero. Conversely, when 
the stock price becomes sufficiently large, the option value should converge to its intrinsic value. These conditions 
are expressed by Equations (7) and (8), respectively, in accordance with standard practice in numerical option 
pricing [9], [10] : 

𝑉(0, 𝑡) = 0, 0 ≤ 𝑡 ≤ 𝑇,      (7) 

	 lim
0→2

𝑉(𝑆, 𝑡) = 𝑆 − 𝐸𝑒$+(-$") , 0 ≤ 𝑡 ≤ 𝑇    (8) 

The right boundary condition is designed to be a representation of the asymptotic behavior of the option 
price. When the stock price is close to zero, the value of the option will have a tendency to be zero, while when 
the stock price increases to high enough, the value of the option will be close to its intrinsic value. The application 
of these conditions aims to ensure that the resulting numerical solutions remain in harmony with economically 
and financially reasonable behavior. 

2.4 Numerical Method 
2.4.1 Finite Difference Spatial Discretization 

The spatial discretization of the governing equation is performed by approximating partial derivatives using 
Taylor series expansions [7], [11]. This approach, known as the Finite Difference Method, converts the 
continuous spatial domain into a set of discrete grid points so that the partial differential equation can be 
represented in algebraic form and solved numerically [11]. 

Let ℎ = ∆𝑆 denote the grid spacing between adjacent spatial points. The Taylor series expansion of the 
function 𝑈 around the point 𝑆3	 are given by Equations (9) and (10): 

 

𝑈(𝑆35%	) = 𝑈(𝑆3) + ℎ
(6
(#
+ 7$

*!
($6
(#$

+ 𝑂(ℎ9)    (9) 

𝑈(𝑆3$%	) = 𝑈(𝑆3	) − ℎ
(6
(#
+ 7$

*!
($6
(#$

− 𝑂(ℎ9)    (10) 

 
By eliminating the first-derivative terms in Equations (9) and (10), second-order central difference schemes for 
the first and second spatial derivatives can be derived. The approximation for the first derivative is given by 
Equation (11): 
 

(6
(#
(𝑆3 , 𝜏) ≈

:%&#(/)$:%"#(/)
*7

     (11) 
 

and the approximation for the second derivative is given by Equation (12): 
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($6
(#$

(𝑆3 , 𝜏) ≈
:%"#(/)$*:%(/)5:%&#(/)

7$
    (12) 

2.4.2 Formation of a system of Ordinary Differential Equations 
After substituting the finite difference approximations in Equations (11) and (12) into the transformed 

partial differential equation (5), the problem is reduced to a system of ordinary differential equations with respect 
to the time variable 𝜏, which characterizes the Method of Lines approach [7]. The resulting semi-discrete equation 
at each interior grid point 𝑆3 is given by Equation (13): 

;:%
;/
= #$

%<$
%

*
.:%"#$*:%5:%&#

7$
/ + 𝑟𝑆3

:%&#$:%"#
*7

− 𝑟𝑢3,    (13) 

For 𝑖 = 1,2, … ,𝑁 − 1. 

By grouping terms with respect to 𝑢3$%, 𝑢3 and 𝑢35%, Equation (13) can be written in the compact form given by 
Equation (14): 

;:%
;/
= 𝛼3𝑢3$% + 𝛽3𝑢3 + 𝛾3:%&#   (14) 

 
where the coefficients are defined by 

𝑎3 =
<%
$0%
$

*7$
− +#%

*7
     (15) 

𝛽3 = − <%
$0%
$

7$
− 𝑟      (16) 

𝛾3 =
<%
$0%
$

*7$
− +#%

*7
      (17) 

 

In matrix form, the system of Equations (14)–(17) can be expressed as: 

;:(/)
;/

= 𝑀(𝜏)𝑢(𝜏) + 𝑤(𝜏)      (18) 
 

where 𝑢(𝜏) = (𝑢%(𝜏), …	, 𝑢=$%(𝜏))-, 
𝑀(𝜏) is a tridiagonal matrix whose entries depend on the nonlinear volatility, and 𝑤(𝜏) is a vector arising from 
the boundary conditions. 
 

Here, 𝜎3*(𝜏) = 𝜎!*(1 + 𝛹 .𝑒+/𝑎*𝑆*3∆3(𝑢)/and ∆3(𝑢) represents an approximation of the second derivative at 

the point	𝑆3. 

2.4.3 Numerical Boundary Condition Treatment 
The system of ordinary differential equations in Equation (18) is solved with respect to time using the explicit 

Forward Euler scheme with time step 𝜏𝒌 = ∆𝝉. The time-marching formula used to compute the option price at 
time level (𝒏 + 𝟏) from the previous level 𝑛 is given by Equation (19):	 

 
𝑢>5% = (𝐼 + 𝑘𝑀>)𝑢>     (19) 

where 𝐈 denotes the identity matrix and 𝐌>represents the system matrix evaluated at time level 𝑛.  
 
At each time step, the nonlinear volatility 𝜎3* is updated based on the gamma approximation 𝐴3(𝐮>) through 
the Barles–Soner volatility function defined in Equation (4). 
 

Since the stock price domain is truncated to a finite interval, the values of the numerical solution at the 
boundary points must be approximated. To maintain second-order accuracy, the boundary values are computed 
using second-order Lagrange polynomial extrapolation. The left and right boundary approximations are given by 
Equations (20) and (21), respectively: 

𝑢! = 2𝑢% − 𝑢*,      (20) 

	𝑢= = 2𝑢=$% − 𝑢=$*	.    (21) 

This treatment preserves the consistency and accuracy of the numerical scheme across the spatial domain.  
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An explicit Forward Euler scheme is adopted for time integration due to its simplicity, low computational 
cost, and ease of implementation within the Method of Lines framework. Although implicit or semi-implicit 
schemes offer unconditional stability, they require the solution of large nonlinear systems at each time step, which 
significantly increases computational complexity for the Barles–Soner equation. Since the present study focuses 
on empirical deployment and interpretability rather than on developing a new solver, the explicit scheme is 
chosen and combined with systematic step-size sensitivity tests to ensure that all simulations are performed within 
a stable regime. 

2.4.4 Stability and Consistency Analysis 
Numerical stability is assessed empirically through grid refinement and time-step sensitivity tests, as 

theoretical CFL-type bounds are difficult to derive for the nonlinear Barles–Soner equation. 
To assess the consistency of the method, the local truncation error is derived using a Taylor series 

expansion. The resulting truncation error is expressed by Equation (22): 
 

𝑇 = 𝑂(ℎ*) + 𝑂(𝑘)    (22) 

where ℎdenotes the spatial step size and 𝑘represents the time step. Equation (22) indicates that the proposed 
scheme is second-order accurate in space and first-order accurate in time. 

Since the time integration is performed using the explicit Forward Euler scheme, the numerical method is 
conditionally stable. In practice, this requires the time step to be sufficiently small relative to the spatial grid in 
order to prevent numerical divergence. Rather than assuming stability a priori, the discretization parameters are 
selected through preliminary experiments. Several combinations of spatial grids 𝑁#and time steps 𝑁-are tested, 
and unstable configurations are discarded. 

Several combinations of spatial grids 𝑁#and time steps 𝑁-are tested in preliminary experiments, including 
(𝑁#, 𝑁-) = (50,2000), (100,5000), (200,10000). Unstable configurations, characterized by oscillatory or 
diverging numerical solutions, are discarded. 

The final grid (𝑁# = 100,𝑁- = 5000)is selected because it satisfies two practical criteria: (i) the numerical 
solution remains stable throughout the entire time domain, and (ii) further refinement of either the spatial grid 
or the time step produces changes in the computed option price of less than 0.5%. This empirical convergence 
behavior is adopted as an operational stability criterion, since explicit CFL-type bounds and formal error 
estimates are difficult to derive for the nonlinear Barles–Soner equation. 

Although the Forward Euler time integrator is conditionally stable, the above sensitivity tests ensure that the 
chosen discretization lies within a stable regime for all reported simulations. 

To assess robustness, the numerical experiments are conducted under multiple grid resolutions and for 
different transaction cost parameters. In addition to the at-the-money (ATM) case, in-the-money (ITM) and out-
of-the-money (OTM) scenarios are also computed. In all cases, the option prices exhibit consistent convergence 
patterns and monotonic behavior with respect to the transaction cost parameter, indicating that the reported 
results are not artifacts of a single discretization choice. 

 
3. RESULT AND ANALYSIS 
3.1 Research Data and Simulation Parameters 
 The data used in this simulation consist of the historical daily closing prices of PT XYZ, an anonymized 
Indonesian listed company in the banking sector. The dataset covers a one-year trading period. Based on these 
data, the latest closing price is recorded as IDR 8,025. 
 For the numerical simulation, the historical volatility 𝜎of the underlying asset is first estimated. The daily 
log-returns are computed using Equation (1), and their standard deviation is then annualized using Equation (2). 
Based on the historical data of PT XYZ, the resulting annualized volatility is 29.49%. 
 The analysis is not limited to the at-the-money (ATM) case. In order to observe the behavior of the model 
under different market conditions, three scenarios are considered: In-the-Money (ITM), At-the-Money (ATM), 
and Out-of-the-Money (OTM). 
The simulation parameters used in this study are summarized in Table 2, while a sample of the daily stock return 
calculation is presented in Table 1. The discretization parameters employed in the numerical experiments are 
selected based on the grid refinement and stability analysis described in Section 2.4.4. 
 In option pricing, volatility plays a dominant role in determining the magnitude of the option premium. 
Therefore, the sensitivity of the numerical results to changes in the volatility and transaction cost parameters is of 
particular interest. In this study, the baseline volatility is estimated from historical data, while the transaction cost 
parameter 𝑎is varied across representative levels. The numerical experiments indicate that small increases in 
either parameter led to systematic increases in the option price, with the effect being more pronounced for higher 
transaction cost intensities. This behavior reflects the nonlinear amplification of effective volatility in the Barles–
Soner model and confirms that the computed option prices are highly sensitive to market uncertainty and trading 
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frictions. Consequently, accurate estimation of volatility and careful calibration of transaction cost parameters are 
essential for obtaining reliable option valuations. 
 

Table 2. Parameter Values 
Parameters Symbol Value Information 

Initial Share Price 𝑆! 8025 Determination of Final Share Price of 
PT. XYZ 

Execution Price 𝐸 8025 At-The-Money (ATM) Scenario 
Due date  𝑇 1 1 Year 

Risk-Free Interest Rate 𝑡 0.06 Benchmark interest rate assumptions 
(6%) 

Historical Volatility 𝜎! 0.2960 Estimates from historical data of PT. 
XYZ (29,49%) 

Transaction Cost Parameters 𝛼 0,0.02,0.05 Independent Variable (Free = 0, 
Small Fee = 0.02, Big Costs = 	0.02) 

Space Steps 𝑁 100 Number of stock grid points (𝑆) 
Time Step 𝑀 5000 Number of time grid points (𝑡) 

 
 In option pricing, volatility plays a dominant role in determining the magnitude of the option premium. 
Therefore, the sensitivity of the numerical results to changes in the volatility and transaction cost parameters is of 
particular interest. In this study, the baseline volatility is estimated from historical data, while the transaction cost 
parameter is varied across representative levels. The numerical experiments indicate that small increases in either 
parameter led to systematic increases in the option price, with the effect being more pronounced for higher 
transaction cost intensities. This behavior reflects the nonlinear amplification of effective volatility in the Barles–
Soner model and confirms that the computed option prices are highly sensitive to market uncertainty and trading 
frictions. Consequently, accurate estimation of volatility and careful calibration of transaction cost parameters are 
essential for obtaining reliable option valuations. 

3.2 Numerical Convergence and Validation 
 Before analyzing the impact of transaction costs, the accuracy of the proposed numerical scheme is first 
validated under frictionless market conditions ( 𝑎 = 0 ). The numerical option prices obtained from the semi-
discretization method are compared with the analytical solution of the classical Black–Scholes model. 
 To measure the accuracy of the numerical results, the relative error between the analytical and numerical 
solutions is defined by Equation (23): 

𝐸? = u
)'(')*!%+')$)(,-./%+')

)'(')*!%+')
u × 100%    (23) 

For the parameter set (𝑆!, 𝐾, 𝑟, 𝜎, 𝑇), the analytical Black–Scholes price is calculated as IDR 1,165.73. 
Table 3 reports the numerical option prices obtained under increasing spatial grid resolutions, together with the 
corresponding relative errors. 

Table 3. Convergence of Numerical Solution towards Analytical Black-Scholes Price (a = 0) 
Number of Spatial Grids 

(𝑵) 
Numerical Option Price 

(IDR) 
Analytical Option Price 

(IDR) Relative Error (𝑬𝑹) 

50 1169.33 1165.73 0.308% 
100 1166.62 1165.73 0.076% 
200 1165.96 1165.73 0.020% 
400 1165.79 1165.73 0.005% 

 
The results in Table 3 demonstrate that as the number of spatial grid points increases, the numerical 

solution converges rapidly toward the analytical Black–Scholes price. When 𝑁 = 50, the relative error is 0.308%, 
which decreases to 0.076% for 𝑁 = 100, 0.020% for 𝑁 = 200, and only 0.005% for 𝑁 = 400. This monotonic 
reduction confirms the consistency and convergence of the proposed semi-discretization scheme. 

This validation step establishes a reliable baseline for subsequent simulations under transaction costs. Since 
the numerical method accurately reproduces the analytical benchmark when 𝑎 = 0, any deviation observed in 
the nonlinear setting can be attributed to the effect of transaction costs rather than to numerical artifacts. 
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3.3 Effect of Transaction Costs on Option Prices 
Based on the validated numerical framework, the simulation is then extended to incorporate proportional 

transaction costs using the Barles–Soner model. 

 
Figure 2. Numerical comparison of European call option prices between the classical Black-Scholes model and 

the Barles-Soner model with transaction cost parameters and (a = 0)(a = 0.015)(a = 0.03) 
 

The dashed black curve represents the theoretical Black–Scholes price in a frictionless market ( 𝑎 = 0 ). 
The solid blue and red curves correspond to the Barles–Soner prices under low and high transaction cost 
scenarios, respectively. A clear divergence pattern is observed across the entire stock price domain. The curves 
incorporating transaction costs consistently lie above the classical benchmark, with the red curve 
( 𝑎 = 0.030 )exhibiting the highest premiums. 

This behavior is consistent with nonlinear option pricing theory under transaction costs (Barles and Soner, 
1998). The presence of transaction costs amplifies the effective volatility through the nonlinear correction term, 
leading to systematically higher option prices. Since option values are positively correlated with volatility, a larger 
transaction cost parameter imposes a higher premium to compensate for the additional hedging costs and risks 
faced by option writers. 
A detailed comparison of option prices at the at-the-money (ATM) position ( 𝑆! = 𝐾 )is presented in Table 4. 

Table 4. Option Price Comparison under Transaction Costs 

Scenario Parameters (𝒂) Option Price (IDR) 
Deviation from 

Classical 
Model (Benchmark) 0 1165,79 − 
Low Transaction Cost 0.015 1558.12 +392.33 
High Transaction Cost 0.030 1942.45 +776.66 

 
Under frictionless conditions, the option price is IDR 1,165.79. When transaction costs are introduced, 

the price increases to IDR 1,558.12 for 𝑎 = 0.015and to IDR 1,942.45 for 𝑎 = 0.030. These correspond to 
premium increases of IDR 392.33 and IDR 776.66, respectively, relative to the classical benchmark. 

Similar monotonic behavior is observed for the ITM and OTM scenarios. In all cases, higher transaction 
cost intensities result in uniformly higher option prices. This consistency across moneyness levels confirms that 
the impact of transaction costs is structural rather than local, and that the Barles–Soner model systematically 
adjusts option values upward to reflect market frictions. 

These results demonstrate that neglecting transaction costs leads to systematic underpricing when the 
classical Black–Scholes model is applied directly. The nonlinear framework therefore provides a more realistic 
valuation by internalizing hedging frictions and market imperfections, particularly in environments where 
transaction costs are non-negligible. 
 
3.4 Practical Implications 
 The numerical results demonstrate that incorporating transaction costs leads to a substantial increase in 
option premiums. In particular, the Barles–Soner model produces systematically higher prices than the classical 
Black–Scholes model, confirming that neglecting transaction costs may result in significant underpricing, 
especially from the perspective of the option writer. 
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 In practice, transaction costs are not constant across market conditions. During periods of high volatility or 
low liquidity, such as market stress or thin trading environments, effective transaction costs tend to increase due 
to wider bid–ask spreads and more frequent portfolio rebalancing. Under such conditions, the divergence 
between classical Black–Scholes prices and nonlinear prices becomes more pronounced. The Barles–Soner 
framework captures this effect through the nonlinear amplification of volatility, implying that the classical model 
becomes progressively less reliable as market frictions intensify. 
 From a practical standpoint, these findings indicate that investors and risk managers in emerging markets, 
such as Indonesia, should not rely solely on the standard Black–Scholes formula, especially in volatile or illiquid 
regimes. The nonlinear model provides a more conservative valuation that internalizes hedging frictions and 
therefore offers a safer benchmark for pricing and risk management. This is particularly relevant in markets 
where transaction costs and liquidity constraints are structurally higher than in developed markets. 
 Consequently, the proposed framework is not merely a numerical alternative, but a practical tool for 
adapting option valuation to different market regimes. By adjusting the transaction cost parameter, the model can 
reflect varying levels of market friction, allowing practitioners to assess how option prices respond to changing 
trading environments and to avoid systematic underestimation of risk. From a regulatory perspective, these 
observations are intended to be illustrative rather than prescriptive, highlighting how frictionless pricing 
assumptions may understate risk in practice and motivating more cautious stress-testing and valuation 
benchmarks in markets with significant trading frictions. 
 
4. CONCLUSION 

This study applies a semi-discretized numerical approach based on the Method of Lines to evaluate 
European call option prices under transaction costs using the nonlinear Barles–Soner model. Using historical 
data from PT XYZ, the numerical scheme is shown to be stable and consistent, and its accuracy is validated 
against the analytical Black–Scholes solution in the frictionless case. 

The results demonstrate that incorporating transaction costs leads to systematically higher option prices 
than those produced by the classical Black–Scholes model, with the divergence increasing as transaction costs 
rise. This confirms that ignoring transaction costs can result in substantial underpricing in realistic market 
environments. 

The scope of this study is limited to a single underlying asset with constant baseline volatility and a single 
observation period. Future research may extend this framework to multiple Indonesian stocks, incorporate more 
realistic market dynamics such as jumps or stochastic volatility, and explore higher-order numerical schemes. 
From a broader perspective, these findings illustrate that frictionless pricing assumptions may understate risk in 
markets with significant trading frictions. This observation is illustrative rather than prescriptive, but it highlights 
the potential value of nonlinear pricing perspectives for more cautious valuation and risk assessment in emerging 
markets. 
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