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 Accurate option pricing is an important issue in quantitative finance, especially 
in emerging financial markets, which are generally characterized by price 
volatility and limited historical data. This research evaluates the numerical 
performance of the classical Crank–Nicolson finite difference method in 
determining the price of European call options based on the Black–Scholes 
model using Indonesian stock market data. The Black–Scholes equation is 
discretized on a uniform spatial and temporal grid, and the numerical solution 
is verified by comparison with the Black–Scholes analytical solution as a 
mathematical reference. The numerical results show that the Crank–Nicolson 
method produces stable and convergent solutions, with a relative error of less 
than 1% at a sufficiently fine grid resolution. Furthermore, sensitivity analysis to 
volatility and temporal convergence tests demonstrate the consistency of the 
numerical solution's behavior to variations in the model's key parameters. These 
findings indicate that the Crank–Nicolson method provides a reliable numerical 
approach for evaluating European option pricing within the classical Black–
Scholes framework under the analyzed market conditions.  
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1. INTRODUCTION 

The development of digital technology has changed the structure of modern financial markets through the 
acceleration of information flow, increased transaction efficiency, and increased complexity of financial 
instruments [1]. These changes have encouraged the widespread use of derivative instruments, both for 
investment and risk management purposes [2], [3]. 

Among various derivative instruments, option contracts play an important role because their value is highly 
sensitive to the price of the underlying asset, market volatility, and time to maturity [4], [5]. Therefore, accurate 
option pricing is a fundamental requirement, especially in emerging financial markets, which are generally 
characterized by higher volatility and relatively limited market efficiency compared to developed markets [6], [7]. 

The Black–Scholes model is a major milestone in option pricing theory because it provides a closed 
analytical solution based on ideal market assumptions, such as constant volatility and the absence of market 
friction [8], [9]. Although this model has strong theoretical significance, various studies show that these 
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assumptions are often not fully met in practice, prompting the development of numerical approaches to solve 
the Black–Scholes model more flexibly [10], [11]. 

Finite difference methods are among the most widely used numerical approaches due to their simplicity of 
formulation and ease of implementation. Among these methods, the Crank–Nicolson scheme is known to have 
unconditional stability and second-order accuracy in both spatial and temporal discretization, making it 
particularly well-suited for parabolic partial differential equations such as the Black–Scholes equation [12]. 
Although various advanced numerical developments have been proposed, the classical Crank–Nicolson method 
remains relevant in applied studies because it offers a good balance between stability, accuracy, and computational 
complexity. 

Although the Crank–Nicolson method has been tested theoretically, empirical studies that specifically 
evaluate the numerical performance and convergence behavior of this method using Indonesian stock market 
data in the context of European option pricing are still relatively limited [15]. This condition indicates a research 
gap, particularly in the provision of controlled numerical evaluations based on emerging financial market data. 

Based on this gap, this research aims to apply the Crank–Nicolson finite difference method in solving the 
Black–Scholes model to determine the price of European call options using Indonesian stock market data. The 
research focuses on evaluating the numerical stability and convergence behavior of the solution by comparing it 
with the Black–Scholes analytical solution as a mathematical reference. With this approach, the research is 
expected to provide a clear numerical picture of the performance of the classic Crank–Nicolson method in the 
context of emerging financial markets. 

 
2. RESEARCH METHOD 
2.1 Research Design 

In this research uses a numerical quantitative approach to determine the price of European call options 
based on the Black–Scholes model, which is solved using the Crank–Nicolson finite difference method. The 
numerical approach was chosen because it allows for the systematic solution of partial differential equations 
through space and time discretization, as well as controlled evaluation of the stability and convergence of solutions 
[16]. 

The Crank–Nicolson method was chosen because it is a semi-implicit finite difference scheme that has 
unconditional stability and second-order accuracy in time and space discretization, making it well suited for 
solving parabolic partial differential equations commonly encountered in quantitative financial modeling [17]. 
This stability advantage makes the method widely used in determining the price of derivative instruments because 
it does not require strict time step restrictions to maintain numerical stability [18]. 

This research is applied and computational in nature, focusing on the direct implementation of established 
numerical schemes to evaluate their performance on real stock market data from emerging financial markets. 
This approach aligns with previous numerical studies that emphasize the importance of validating numerical 
methods using empirical data to evaluate the reliability of solutions under realistic market conditions [19]. 

This research is applied and computational in nature, focusing on evaluating the numerical performance of 
the classical Crank–Nicolson method using Indonesian stock market data as a representation of emerging 
financial markets. This research does not aim to propose new methodological innovations, but rather to evaluate 
the numerical stability and convergence behavior of solutions through spatial and temporal convergence testing 
and limited sensitivity analysis of volatility, as was done in previous numerical studies. 

 
2.2 Mathematical Model 

Mathematical models applied in this research are based on the Black–Scholes partial differential equation 
that determines the pricing of European call options, which is formulated as follows: 

𝜕𝑉

𝜕𝑡
+ 1

2
𝜎2𝑆2 𝜕

2𝑉

𝜕𝑆2
+ 𝑟𝑆 𝜕𝑉

𝜕𝑆
− 𝑟𝑉 = 0     (1) 

 
where 𝑉(𝑆, 𝑡) denotes the option price depends on the underlying asset price 𝑆 and time 𝑡, 𝜎 represents the asset 
volatility, and 𝑟 denotes the constant risk-free interest rate. Equation (1) is derived under ideal market 
assumptions and serves as the theoretical foundation for the numerical methods applied in this research [8].  

Equation (1) is derived by assumption that the underlying stock price evolves according to a Geometric 
Brownian Motion (GBM), which is expressed as: 

𝑑𝑆 = 𝜇𝑆	𝑑𝑡 + 𝜎𝑆	𝑑𝑊'                (2) 
 
where 𝜇 denotes the expected stock price growth rate and 𝑊' denotes a standard Brownian motion [4]. By 
applying the no-arbitrage principle and transforming the model into the risk-neutral probability measure, the drift 
parameter 𝜇 is replaced by the risk-free interest rate 𝑟, resulting in the Black–Scholes formulation [20][21]. 

For a European call option, the terminal condition at maturity 𝑡 = 𝑇 are defined as 
𝑉(𝑆, 𝑇) = max(𝑆 − 𝐾, 0)      (3) 
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while the boundary conditions over the bounded asset price domain 𝑆 ∈ [0, 𝑆()*] are defined as: 

𝑉(0, 𝑡) = 0, 𝑉(𝑆()* , 𝑡) = 𝑆()* −𝐾𝑒+,(.+')    (4) 
 

where 𝐾 denotes the strike price and 𝑇 is the time to maturity of the option. These boundary conditions reflect 
the theoretical behavior of the European call option value under extreme underlying asset prices, that is, when 
the stock price approaches zero and when the stock price is very high [22]. 

In the numerical implementation, the stock price domain is limited to the interval up to 𝑆()* to allow for 
limited spatial discretization. In this research, the upper limit of the stock price is explicitly set at 𝑆()* = 4𝐾, 
which is numerically large enough to ensure that the upper bound solution approaches its theoretical asymptotic 
value [22]. The selection of such a limited price domain is a common practice in the numerical solution of Black–
Scholes equations to minimize boundary truncation errors without significantly increasing the computational load 
[23][24]. 

 
2.3 Data Source and Parameter Estimation 

The empirical data used in this research was obtained from Yahoo Finance, using daily closing stock prices 
of a large publicly listed company in Indonesia (referred to as PT XYZ). The dataset covers the observation 
period from January 3, 2025, to December 30, 2025, with a total of 235 daily observations. Choosing a single 
representative stock was intentional as part of the research design to maintain a controlled numerical environment 
for evaluating the performance of the Crank–Nicolson method. Focusing on a single asset allows for a clearer 
analysis of the numerical stability and convergence behavior of the scheme without being distorted by cross-asset 
parameter heterogeneity, particularly differences in volatility structure and price scale. Therefore, this research 
prioritizes in-depth and controlled numerical evaluation over cross-asset generalization, which is beyond the 
scope of this research and may be a direction for development in future research. 

The model parameters include the most recent stock price (𝑆0), the strike price (𝐾), the risk-free interest 
rate (𝑟) obtained from official publications of Bank Indonesia, the annualized volatility (𝜎) estimated from daily 
return data, and the time to maturity (𝑇) expressed in years. Although the observation period was limited to one 
year, this data range was considered sufficient to estimate consistent volatility parameters within the framework 
of the classic Black–Scholes model with the assumption of constant volatility. 

The stock price volatility (𝜎) is computed based on the standard deviation of daily logarithmic returns. The 
logarithmic return is defined as 

𝑟' = ln = 1"
1"#$

>      (5) 

 
where 𝑆' dan 𝑆'+2 denote the stock closing prices on day-𝑡 and the previous day, respectively [25]. The standard 
deviation of daily returns is computed as: 

𝑠 = @ 2
3+2

∑ (𝑟' − 𝑟̅)43
'52       (6) 

 
where 𝑛 denotes the number of observation days and 𝑟̄ represents the mean daily return [26]. The annualized 
volatility is obtained by adjusting the annualized standard deviation of daily returns using the square root of the 
annual number of trading days in a year (𝑘 = 252), that is, 

𝜎 = √𝑘	𝑠      (7) 
 

This approach a standard procedure in the analysis of financial market volatility based on discrete-time data 
[25][26]. The volatility value obtained is used as a basic parameter in numerical calculations, while limited 
variations around this value are considered in sensitivity analysis to evaluate the stability of numerical solutions 
against changes in volatility. The validation of the numerical solution is performed by comparing it with the 
Black–Scholes analytical solution, with the aim of assessing the accuracy and convergence behavior of the Crank–
Nicolson scheme, rather than replicating empirical market option prices. 

2.4 Time Transformation  
To simplify numerical computation, a time-variable transformation is introduced by defining 𝜏	 = 	𝑇	 − 	𝑡, 

dan 𝑈(𝑆, 𝜏) = 	𝑉(𝑆, 𝑇	 − 	𝜏) thereby reformulating the option pricing problem as a forward time-evolution 
problem. With this transformation, the time derivative can be written as 

67
6'
= − 68

69
      (8) 

 
Substituting equation (8) into equation (1) yields the forward-time formulation of the partial differential equation 
as 

68
69
= 2

4
𝜎4𝑆4 6

%8
61%

+ 𝑟𝑆 68
61
− 𝑟𝑈     (9) 
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which subsequently became as the basis for the application of the Crank–Nicolson finite difference scheme in 
this research. 

2.5 Spatial Discretization 

The spatial domain [0, 𝑆()*] is discretized into 𝑀 uniformly spaced grid points with a step size Δ𝑆 = 1&'(
:

. 

The value of the numerical solution function at the 𝑖-th spatial grid point and 𝑗-th time level is denoted as 𝑈;
< ≈

𝑈(𝑆; , 𝜏<), with 𝑆; = 𝑖∆𝑆. To approximate the spatial derivatives in equation (9), second-order accurate central 
finite difference schemes are employed. The first-order spatial derivative at the grid point 𝑆; is approximated as 

68
61
Q
1)
≈ 8)*$

+ +8)#$
+

4∆1
      (10) 

 
while the second-order spatial derivative is approximated as: 

6%8
61%
Q
1)
≈ 8)*$

+ +48)
+>8)#$

+

(∆1)%
     (11) 

 
This approach produces a symmetric and consistent spatial approximation, and is suitable for application to 
parabolic partial differential equations such as the Black–Scholes model. In this research, the number of spatial 
grid points 𝑀 is varied to analyze the numerical convergence behavior. To maintain consistency between spatial 
and temporal discretization, the number of time steps N is chosen to be proportional to the number of spatial 
grids, while temporal convergence testing is performed by varying the time step size at a fixed spatial resolution. 

2.6 Crank-Nicolson Time Discretization 

Let the time interval [0, 𝑇] be divided into 𝑁 uniform time steps with a step size 𝛥𝜏 = .
?

. Using the spatial 
discretization in Subsection 2.4, the Crank–Nicolson scheme is applied to equation (9) by averaging the spatial 
differential operator over two consecutive time levels. This scheme is formulated as: 

8)
+*$+8)

+

∆9
= 2

4
T𝐿V𝑈;

<>2W + 𝐿V𝑈;
<WX     (12) 

 
where 𝐿(⋅) represents the spatial differential operator of the Black–Scholes equation. This discretization process 
generates a system of linear equations with tridiagonal coefficient matrices, which can then be written in matrix 
form as follows: 

𝐴𝑈<>2 = 𝐵𝑈< + 𝑏     (13) 
 

where matrices 𝐴 and 𝐵 are tridiagonal matrices that depend on the model parameters and grid sizes, while vector 
𝑏 contains contributions from boundary conditions [10]. System of linear equations generated is effectively solved 
using Thomas's Algorithm, considering its low computational complexity and good numerical stability for systems 
with tridiagonal structure [27]. The numerical iteration are performed backward from the maturity time to the 
initial time. Final value 𝑉(𝑆0, 0) represents the estimated price of the European call option at the present time 
[10][12]. 

In the standard time discretization, temporal convergence testing was performed by setting a fixed spatial 
resolution and gradually varying the time step size. This approach was used to evaluate the consistency of 
numerical solutions with respect to time discretization and to ensure the temporal stability of the Crank–Nicolson 
scheme within the Black–Scholes model. This test is verifiable and is not intended to quantitatively estimate the 
order of convergence. 

 
2.7 Validation and Evaluation 

Numerical solutions are validated by comparing them with the Black–Scholes analytical solution for 
European call options, which is formulated as follows: 

𝐶 = 𝑆0𝑁(𝑑2) − 𝐾𝑒+,.𝑁(𝑑4)     (14) 
with 

𝑑2 =
@AB,-. C>B,>

$
%D

%C.

D√.
, 𝑑4 = 𝑑2 − 𝜎√𝑇     (15) 

 
Where 𝑁(⋅) is the cumulative distribution function of the standard normal distribution. An absolute difference 
between the numerically calculated option price and the analytical solution is used as an accuracy indicator to 
assess the convergence rate and accuracy of the applied numerical scheme. In temporal convergence testing, 
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accuracy is evaluated by comparing numerical solutions obtained at various time step sizes against the Black–
Scholes analytical solution as a reference. 
 
2.8 Computational Implementation 

Python was chosen based on the availability of reliable and widely tested numerical libraries in scientific 
computing, such as NumPy for numerical operations and Matplotlib for result visualization. Google Colab was 
chosen because it provides a stable, easily reproducible cloud-based computing environment that allows 
numerical computations to be executed without dependence on local hardware specifications. This combination 
supports transparency, reproducibility, and efficiency in the implementation of numerical methods in this 
research. 
 
3. RESULT AND ANALYSIS 

This research aims to evaluate the performance of the Crank–Nicolson finite difference method in pricing 
European call options within the Black–Scholes framework. The analysis focuses on empirical data processing, 
evaluation of numerical convergence behavior, and measurement of accuracy levels through systematic 
comparison between numerical solutions and Black–Scholes analytical solutions as mathematical benchmarks. 

3.1 Empirical Data and Parameter Estimation 
Daily closing stock prices are used as the basis for estimating parameters in the Black–Scholes model. Daily 

logarithmic returns are calculated from the ratio of consecutive closing prices, as presented in Table 1. The results 
show that stock returns fluctuate around zero without a dominant trend during the observation period, indicating 
relatively stable short-term price dynamics. 

Table 1. Logarithmic Daily Returns of the Observed Stock Prices 
𝒕 Date Closing Price on the -th Day  

(𝑺𝒕) IDR 
Closing Price on Day t−1 

(𝑺𝒕+𝟏) IDR 
Logarithmic 

Return 
(𝒓𝒕) 

0 January 03, 2025 9850 9900 −0.005063 
1 January 06, 2025 9675 9850 −0.017926 
2 January 07, 2025 9525 9675 −0.015625 
⋮ ⋮ ⋮ ⋮ ⋮ 

233 December 29, 2025 8025 8025 0 
234 December 29, 2025 8075 8025 0.006211 

 
Based on descriptive statistical analysis of logarithmic returns, the Black–Scholes model parameters were 

obtained as summarized in Table 2. The estimated annual volatility of 29.37% is within the range commonly 
reported for banking sector stocks in the Indonesian capital market, reflecting moderate volatility conditions 
without extreme spikes during the observation period. These parameters are used as the basis for all numerical 
calculations in the following section. 

Table 2. Estimated Parameters Used in the Black–Scholes Model 
Parameter Symbol Value 

Last stock price 𝑆0 8075 (IDR) 
Strike price 𝐾 10000 (IDR) 
Risk-free rate 𝑟 0.06/year 
Mean daily return 𝑟̄ -0.000867 
Daily standard deviation 𝑠 0.018502 
Annualized volatility 𝜎 0.293703/year 
Time to maturity 𝑇 0.25 (year) 

 
3.2 Numerical Results and Convergence Analysis 

Based on the parameters in Table 2, the price of European call options is calculated numerically using the 
Crank–Nicolson method and analytically using the Black–Scholes formula. The analytical solution is used as a 
reference to evaluate the accuracy of the numerical solution. To measure the degree of agreement between the 
two approaches, the relative error is defined as 

𝐸𝑅 = |I/+I0|
I/

× 100%      (16) 

 
where 𝐶J denotes the option price based on the analytical Black–Scholes solution and 𝐶? denotes the option 
price computed using the Crank–Nicolson method. 

In the context of numerical methods, the accuracy level refers to the rate of decrease in numerical error 
with respect to grid size refinement. The Crank–Nicolson scheme theoretically has second-order accuracy in 
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both spatial and temporal discretization, which means that the numerical error is expected to decrease 
proportionally to the square of the grid step size when the spatial and temporal resolution is refined. A 
comparison between the numerical and analytical option prices for various grid sizes in spatial and temporal grid 
sizes (𝑀	 = 	𝑁) is presented in Table 3. The numerical option price s are evaluated at the initial stock price and 
expressed as 𝑉(𝑆0, 0). 

Table 3. Comparison of Numerical and Analytical European Call Option Prices and Relative Errors 
𝑴 = 𝑵 Numerical Price 

(IDR) 
Analytical Pricing 

(IDR) 
Relative Error (%) 

50 62.538028 53.023359 17.944297 
100 54.132018 53.023359 2.090887 
150 53.599257 53.023359 1.086122 
200 53.420202 53.023359 0.748431 
250 53.352819 53.023359 0.621349 
300 53.127669 53.023359 0.196725 
400 53.156822 53.023359 0.251706 
500 53.115226 53.023359 0.173257 
600 53.061557 53.023359 0.072040 

 
The results in Table 3 show that increasing the grid resolution causes the convergence of numerical option 

prices toward the analytical Black–Scholes value to be stable and consistent. On relatively coarse grids, the 
numerical solutions show significant deviations, but these errors decrease systematically as the number of grid 
points increases. 

To reinforce the spatial convergence analysis, Figure 1 displays a log–log graph between relative error and 
spatial step size. This graph shows a consistent downward trend in error that is consistent with second-order 
behavior with respect to spatial step size. This visualization is used as qualitative verification of the convergence 
characteristics of the Crank–Nicolson scheme, without performing numerical slope estimates or making 
quantitative claims about the order of convergence. 

 
Figure 1. Log–Log Plot of Relative Errors of Crank–Nicolson Solutions Versus Spatial Step Size 

 
In this research, convergence analysis focused primarily on spatial discretization, while temporal 

convergence was evaluated separately by keeping the spatial resolution constant. This approach is commonly 
used in numerical studies to ensure that the effects of spatial and temporal discretization can be analyzed in a 
controlled manner. 

Furthermore, the tendency of numerical solutions on coarse grids to produce higher option prices than 
analytical solutions can be explained as a result of discretization errors and boundary truncation errors in limited 
spatial domains. This effect is significantly reduced when the grid resolution is refined, as reflected in the decrease 
in relative error in Table 3 and Figure 1. 

From a numerical and practical standpoint, this stable and controlled convergence behavior indicates that 
the Crank–Nicolson method can be used as a reliable computational approach for option pricing within the 
Black–Scholes framework. In the context of the Indonesian stock market, which during the observation period 
did not show extreme fluctuations or significant volatility spikes, the assumption of constant volatility still provides 
an adequate approach for numerical evaluation. This condition also supports the stability of the resulting solution, 
given that the Crank–Nicolson scheme is sensitive to sharp changes in model parameters. 
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For financial practitioners, such as derivatives analysts and risk managers, this consistent convergence 
characteristic has practical implications in that option pricing can be performed numerically without relying on 
the selection of very small time steps. Thus, the Crank–Nicolson method has the potential to be efficiently 
integrated into computation-based analysis tools, such as Python implementations or numerical spreadsheets, as 
a means of initial option pricing and sensitivity analysis in emerging financial market environments. 

 
3.3 Graphical comparison of Numerical and Analytical Solutions 

Figure 2 shows a graphical comparison between the Crank–Nicolson numerical solution and the Black–
Scholes analytical solution at various spatial grid resolutions. At relatively coarse grid resolutions, the numerical 
solution tends to produce higher option prices than the analytical solution. 

 
Figure 2. Comparison Between Numerical Crank–Nicolson Solutions and Analytical Black–Scholes Prices for 

European Call Options 
 

At relatively small values of 𝑀, the numerical estimates tends to produce option prices that are higher than 
those obtained from the analytical solution. As the grid spacing becomes finer, the numerical solution gradually 
approaches and eventually almost coincides with the analytical solution. This behavior reflects the increased 
numerical accuracy due to more detailed discretization, and supports the convergence results shown 
quantitatively in Table 3. 

3.4 Relative Error Behavior and Spatial Distribution 
Figure 3 shows the relationship between relative error and the number of spatial grid points. It can be seen 

that the relative error decreases monotonically as the grid resolution increases, confirming the numerical stability 
and convergence characteristics of the Crank–Nicolson method in solving the Black–Scholes model. 

 
Figure 3. Relative Error of the Crank–Nicolson Numerical Solution as a function of the spatial grid size M 

 
At sufficiently fine grid resolutions, the relative error is below 1%, indicating that the numerical solution 

obtained is very close to the analytical solution. This stable numerical performance is consistent with the 
characteristics of the market analyzed in this case, where the annual volatility of 29.37% reflects conditions without 
sharp price fluctuations or excessive structural instability. 

In this context, the Crank–Nicolson method demonstrates superiority because its unconditional stability 
allows for the use of relatively flexible time steps without triggering the numerical instability commonly found in 
explicit schemes. Conversely, in market conditions with much more extreme price changes, the fully implicit 
method is often more appropriate, despite the consequences of greater numerical diffusivity and higher 
computational costs. Therefore, the characteristics of the market analyzed make the Crank–Nicolson method an 
appropriate compromise between stability, accuracy, and relative computational cost. 
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Figure 4. Spatial Distribution of Relative Errors with Stock Price for Various Spatial Grid Sizes 

 
Figure 4 shows the distribution of errors relative to the underlying stock price. The largest errors are 

concentrated around the at-the-money region (S ≈ K) , which is related to local discontinuities in the option payoff 
function. Outside this region, in the in-the-money and out-of-the-money conditions, the relative errors tend to be 
smaller and more stable, and show no signs of numerical instability. 

It should be noted that all numerical calculations in this study are deterministic once the model parameters 
are set. The annual volatility estimates are obtained from historical data, which inherently contain statistical 
variability. Therefore, this study does not perform confidence interval estimation or advanced statistical sensitivity 
analysis, as the main focus is the evaluation of the numerical performance of the Crank–Nicolson method against 
the Black–Scholes analytical solution as a mathematical reference. Market option price-based evaluation, 
computational efficiency measurement, and broader quantitative comparisons with alternative numerical 
methods could be the direction of future research. 

As a supplement to the analysis of stability and numerical convergence, Table 4 presents a conceptual 
comparison between the Crank–Nicolson method and other finite difference schemes commonly used in option 
pricing. 

Table 4. Conceptual Comparison of the Final Difference Method for Determining Option Prices 
Scheme Stability Accuracy Cost (Relative) 

Explicit Conditional 1st/2nd Low 
Implicit Unconditional 1st High 
Crank–Nicolson Unconditional 2nd Medium 

 
Table 4 shows that the Crank–Nicolson method provides a practical compromise between numerical stability 
and computational cost. Compared to explicit schemes that are sensitive to time step constraints and fully implicit 
schemes that are more computationally expensive, Crank–Nicolson offers a suitable balance for numerical 
evaluation in markets with moderate volatility. Basic execution time measurements using the timeit function in 
Python, with the same spatial and temporal grid resolution, show that the computation time of the Crank–
Nicolson scheme lies between that of the explicit and fully implicit schemes, supporting the classification of 
“medium” relative computational cost as shown in Table 4. 

The relative errors obtained in this research are consistent with the results reported in the numerical 
literature on option pricing using the Crank–Nicolson final difference method. Previous numerical studies, such 
as [10] and [12], report that at sufficiently fine spatial and temporal grid resolutions, the Crank–Nicolson scheme 
generally produces relative errors below 1% when verified against the Black–Scholes analytical solution. Thus, 
the error levels obtained in this study are within the range of accuracy consistent with the numerical benchmarks 
commonly reported in the literature. 

3.5 Sensitivity Analysis to Volatility 
Sensitivity analysis was performed by varying the volatility value around its estimated value, while other 

model parameters were kept constant. All calculations were performed at a sufficiently fine grid resolution to 
minimize the effect of discretization errors. 
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Figure 5. Sensitivity of European Call Option Prices to Variations in Volatility Parameters 

 
Figure 5 shows that the price of European call options increases monotonically as volatility increases. This 

pattern is consistent with the theoretical properties of the Black–Scholes model, in which volatility represents the 
degree of uncertainty in the movement of the underlying asset price and contributes directly to an increase in the 
value of the option. 

From a numerical perspective, these results show that the Crank–Nicolson scheme is capable of capturing 
the solution's response to variations in volatility parameters in a stable and consistent manner, without exhibiting 
numerical oscillations or computational instability within the range of variations considered. From a practical 
perspective, this monotonic relationship allows the Crank–Nicolson method to be used as a reliable 
computational tool for scenario analysis and basic sensitivity testing in derivative evaluation. 

It should be noted that this sensitivity analysis was conducted within the framework of the Black–Scholes 
model with the assumption of constant volatility and without considering the dynamics of stochastic volatility. 
Therefore, the results obtained are intended as a controlled numerical evaluation, not as a full representation of 
real market conditions. Further development may include the application of more complex volatility models or 
a comparison of numerical sensitivity between methods to expand the practical relevance of these findings. 

3.6 Temporal Convergence 
To complete the numerical convergence evaluation, a time convergence analysis was performed by changing 

the time step size, while the spatial resolution was maintained at a sufficiently fine level. This approach aims to 
assess the consistency of numerical solutions with respect to controlled time discretization. 

In this test, the spatial resolution was chosen to be sufficiently fine so that spatial errors could be relatively 
ignored, and the variation in numerical solutions primarily reflected the influence of time discretization. Although 
the Crank–Nicolson scheme theoretically has second-order accuracy with respect to the time step size, this study 
does not aim to estimate the order of convergence quantitatively, but rather to verify the stability and consistency 
of the numerical solution with respect to temporal refinement. 

 
Figure 6. Temporal Convergence of European Call Option Prices Using the Crank–Nicolson Method 
Figure 6 shows that the numerical option prices tend to converge to stable values as the time step is refined. 

This behavior indicates that the Crank–Nicolson scheme produces solutions that are consistent with temporal 
smoothing and shows no indication of numerical instability within the range of time steps considered. 

Although this research does not perform a detailed quantitative comparison of execution times for all grid 
variations, basic execution time measurements using Python's timeit function have been performed as a reference 
for classifying the relative computational costs between numerical schemes. 
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4. CONCLUSION 
This research evaluates the performance of the Crank–Nicolson finite difference method in determining 

the price of European call options based on the Black–Scholes model using Indonesian stock market data. 
Numerical results show that the Crank–Nicolson method produces stable and convergent solutions as the grid 
resolution increases, and approximates the Black–Scholes analytical solution used as a validation reference. The 
relative error decreases systematically and is below 1% on a sufficiently fine grid, which indicates the consistency 
and reliability of the numerical approach applied. 

Spatial and temporal convergence analysis confirms that the Crank–Nicolson scheme shows no indication 
of numerical instability within the range of parameters and step sizes considered. The relative error distribution 
also exhibits a pattern consistent with the theoretical characteristics of the option payoff function, with the largest 
errors concentrated around the at-the-money region. These findings support the suitability of the Crank–
Nicolson method as a stable numerical approach within the framework of the classical Black–Scholes model. 

In the context of the Indonesian stock market, which during the observation period was characterized by 
an annual volatility of around 29.37%, representing moderate volatility conditions without extreme spikes, the 
Crank–Nicolson method shows a good balance between numerical stability and accuracy. Compared to explicit 
schemes, which are limited by time-step stability requirements, and fully implicit schemes, which tend to be more 
diffusive and computationally expensive, Crank–Nicolson offers a practical compromise suitable for numerical 
evaluation under such market conditions. With these characteristics, this method can be used as a stable and 
easily implemented initial numerical baseline for option pricing and basic sensitivity analysis. 

From a practical perspective, the findings of this research equip practitioners in emerging financial markets, 
such as derivatives analysts and risk managers, with computational tools that can be efficiently implemented in 
common computing environments, including Python-based modeling or numerical spreadsheets. In practice, the 
Crank–Nicolson method can be used for initial decision-making and basic scenario evaluation before applying 
more complex models, especially in market conditions with moderate volatility. This study has limitations 
because it only considers the Black–Scholes model with constant volatility assumptions and has not conducted a 
detailed quantitative comparison of computational efficiency between numerical methods. 

Therefore, further research could be directed toward systematic measurement of execution time, more in-
depth analysis of convergence sequences, application of more realistic volatility models, and quantitative 
comparisons with alternative numerical methods to expand the relevance and practical validity of this study's 
results. 
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